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Sammendrag 

I denne beretning dokumenteres den model, som anvendes i det danske 

svineavlsprogram til beregning af avlsværdier for antal fødte grise per kuld. 

Modellens anvendelse illustreres med et lille eksempel. Modellen betegnes som en 

enkelt-dyr-model med gentagne målinger (repeatability animal model), og 

parametrene estimeres ved hjælp af miksede modelmetoder. 

I den oprindelige enkelt-dyr-model antages det, at avlsværdierne stammer fra en 

population, hvis gennemsnit er nul. Indenfor Landrace og Yorkshire er mange dyr 

blevet importeret fra lande, hvis gennemsnit for kuldstørrelse afviger indbyrdes, 

og dette medfører, at den ovennævnte antagelse ikke opfyldes. For at råde bod på 

dette inkluderes en gruppeeffekt i modellen. Den anvendte model er følgende: 

Yijklmno = H i + S j + K k l + £ x m G k m + aijklmn + Pijklmn * eijklmno 

hvor Y i j k l m n o repræsenterer antal fødte grise fra kuld o og so n. H £ , Sj og K k l er 

ystematiske effekter, der repræsenterer henholdsvis besætning x år x 

befrugtningsmetode (KS eller naturlig befrugtning), årstid og endelig race x 

kuldnummer. E x m G ^ er gruppeeffektens bidrag til antal fødte grise indenfor 

race k (I x m = 1). a i j k l m n , p i j k l n m og e i j k l m n er tilfældige effekter, der 

repræsenterer henholdsvis avlsværdier, permanente miljøeffekter og endelig 

resteffekten fra kuld o. Arveligheden og gentagelseskoeffici enten antages at være 

henholdsvis 0,10 og 0,15. Inversen af s l æ g t s s k a b s k o r r e l a t i o n s m a t r i een er beregnet 

efter en algoritme afledt af Henderson (1976). 

I beretningen redegøres for nogle matematiske og EDB-mæssige overvejelser 

tilknyttet opbygningen og løsningen af den miksede models ligningssystem. 

En række antagelser, som ligger til grund for estimation af avlsværdier, er 

diskuteret. En antagelse, som muligvis ikke er opfyldt, er, at antal fødte grise 

kun påvirkes af gener, som har en additiv virkning. Dette medfører, at 

gruppeeffekter kombineres på en additiv måde. Det er hensigten, at 

heteroseeffekter vil blive indarbejdet i proceduren i fremtiden. 
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Summar y 

A model for selection for litter size used in the Danish pig breeding progra 

is described, and an example of its use is given. The model is based on 

repeatability reduced animal model with groups and the parameters are estimate 

using mixed model methodology. 

The usual assumption of the animal model is that breeding values are sample 

from a population with zero mean. Within the Landrace and Yorkshire breeds, 

considerable amount of importation has taken place over the years and it is clea 

that there are rather large differences in litter size among the countries o 

origin. The purpose of introducing groups in the model is to take account of thi 

fact. The model which is used is: 

Yijklmno = H i + s j + Kkl + £ x m G k m + aijklmn + Pijklmn + eijklmno 

where, Y i j k l m n o is the o t h record (number of born piglets) of sow n, H£, Sj, K k 

are fixed effects of herd x year x type of fertilisation, season and breed : 

parity number, respectively, I x m Gj^ is the fixed group contribution nested 

within breed k (z x m = 1) and a i j k l m n . p i j k l m n , and e i j k l m n are breeding values, 

permanent environmental effects, and residuals, respectively (random effects). Th< 

heritability and repeatability used as priors are 0.10 and 0.15, respectively. Thi 

inverse of the additive genetic relationship matrix is computed using an algorithr 

from Henderson (1976). 

Some mathematical aspects associated with the development of the model ari 
discussed, as well as several computing details involved with the building ant 

solution of the mixed model equations. 

A number of assumptions of the model are described. One of the most contentious 

assumptions is that the trait is affected by genes that act additively, within anc 

between loci. Group effects combine therefore in an additive manner. Thi; 

assumption 'is hardly tenable in a trait like litter size, and it is hoped thai 

heterosis'effect will be incorporated in the model in the future. 
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lj_Introduction 

It is well established that increased litter size improves the economic 

efficiency of pig production. This would be further enhanced if production traits 

such as leanness were to be approaching an optimum for a given slaughter weight, 

so that further genetic improvement as carcass fat declines becomes difficult to 

achieve (Hill and Webb, 1982). 

Reasons why litter size has not been included in the breeding goal of the 

Danish pig breeding program have been, firstly, that experimental evidence showing 

that it can be enhanced by selection has been lacking. Secondly, it has been 

argued that genetic improvement of litter size using traditional selection 

techniques would lead to very slow progress, essentially, due to the low 

heritability of the trait and its sex limited expression (Smith, 1964). 

Recently however, some encouraging results have become available. Le Roy et al. 

(1987) presented the results of a hyperprolific sow experiment carried out under 

farm conditions, where the estimates of realised heritability for total number of 

born piglets and total number of liveborn piglets were 0.14+0.05 and 0 . 1 0 + 0 . 0 5 , 

respectively. Also, Avalos and Smith (1987) have shown that use of a family index 

incorporating several sources of information can lead to expected annual responses 

of up to 0.51 pigs per litter. 

With these results as a background, in 'June 1988 the National Institute of 

Animal Science made available to the Danish pig breeding program, predicted 

breeding values for total number of born piglets of breeding animals. The trait 

was used partly because overall reproductive efficiency can be enhanced most 

effectively by increasing litter size (Smith et al, 1983) and partly, because this 

is the most reliable data available on reproduction traits in the Danish databank 

for pig production data. 

The predicted breeding values were derived using mixed model techniques, and 

the model used is known as the repeatability animal model with groups. This 

evaluation procedure takes into account the heritability and repeatability of the 

trait, and makes use of all the records in different parities of the animal 

itself, and of all the records from the animal's relatives present in the data 

set. There can be more than one thousand records available from an animal's 

relatives, and all the information is combined in an optimum manner in order to 

evaluate its breeding value. Both males and females receive a predicted breeding 

/alue. These predicted breeding values are simultaneously corrected for such 
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effects as herd-year, season, parity number, breed and type of conceptior 

(artificial insemination versus natural mating). Account is also taken of the fact 

that some animals are imported from countries whose means differ. For example, the 

population of Finnish Landrace sows has a mean litter size that differs from the 

population of Danish Landrace sows. Rather than assuming that all breeding values 

are sampled from one population, the group effect in the model reflects that the 

sampling process involves different populations, and even mixture of populations, 

whose means for the trait in question differ. 

The first years are considered an exploratory period during which alternative 

models will be fitted to the data and the sources of variation contributing to 

number of born piglets will be investigated. During this initial stage, the index 

will not be part of the breeding goal. 

The purpose of this publication is to describe and document the methods 

followed in the development of these predicted breeding values. 

model with groups 

The predicted breeding values for total number of born piglets are obtained 

using mixed model techniques on a repeatability reduced animal model with groups. 

The computer program was written in PL/I and it can accommodate an arbitrary 

number of fixed and random effects. 

In the individual animal model excluding groups, the phenotypic value is 

written in terms of fixed effects and the contribution from the animal's additive 

genetic and non-genetic values. For example, assuming an additive genetic model, 

for a given animal, j, say, that makes a record Cy£j) in herd (H) i, we write: 

where a - is the additive genetic value and e £ j is the residual non-genetic 

effect. The usual assumption in this model with respect to the breeding values is 

that they have null means. 

In order to take into account the fact that animals often originate from 

populations whose means differ, a group effect is included in the model. This idea 



was introduced in the context of a sire model by Thompson (1979) and extended to 

an individual animal model by Robinson (1986), Westell and Van Vleck (1987) and 

Quaas (1988). The concept is simple and intuitively appealing and it arises from 

the fact that an animal receives half of its genes from one parent and the other 

half from the other. If animals 1 and 2, which are sampled from populations with 

means gj and g 2 , respectively, are parents of animal 3, then under the group 

model, the expected breeding values of 1, 2, and 3 are gj, g 2 . and 1/2 (gj + g 2 ) , 

respectively. 

A matrix representation of the individual animal model with groups is: 

y = Xb + Gg + Za + e (1) 

where y is the vector of observations, b is the vector of fixed effects excluding 

groups, g is the vector of group effects, and a and e are random vectors. The 

matrices X, G and Z are known design matrices. The matrix G has numbers of columns 

equal to the number of groups, and each row sums to one. The elements of a row of 

G are the proportion with which a group effect contributes to the given 

individual. They can also be interpreted as the proportion of genes originating 

from the different groups. 

The first and second moments of (1) are: 

E y = Xb + Gg 

a 0 

e 0 

and 

Var y = ZAZ'o 2
 a + R Z A a

2
a R (2) 

a (ZA)'a 2
a A " 2 , 0 

e R' 0 R 

In (2), A is the numerator relationship matrix and a 2
a is the additive genetic 

variance in the populations from which base animals are sampled. R is usually 

assumed to be equal to I 0
2

e , where I is the identity matrix and 0
 2

e is variance 

of the residual effect. Thus, the model assumes that groups have common variance. 

The important concept in the group model is that breeding values are given by: 

a 
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The assumption in (3) is that E(a*) = Qg, 

where ZQ = G. 

Like any other fixed effect, groups may not be estimable. While predicted 

genetic values are always estimable, expressing them in the form of (3) may render 

them non-estimable. Differences among predicted breeding values expressed as in 

(3) can be estimable if group effects are not nested within other fixed effects. 

If group effects are nested within breeds, for example, then estimable functions 

of differences among breeding values, expressed as in (3), can be made within 

breeds only. 

The total number of equations that have to be solved to obtain the predicted 

genetic values is equal to the number of fixed effects plus the total number of 

animals in the system. With large data sets, this can be a very large number and 

computing costs can be substantial. 

3. The reduced animal model w i t h g r o u p s 

An alternative formulation is to make use of Mendelian theory, and to 

reparameterise the model, so that the total number of breeding values is reduced 

from the total number of animals, to the number of animals that have offspring. 

This is known as the reduced animal model, originally proposed by Quaas and Pollak 

(1980). 

Let a s (a d) be the additive genetic effect of the sire (dam). Then, ignoring 

groups for the moment, the additive genetic effect of an individual, aQ, for the 

case of both parents known, one parent known, the sire say, and none of the 

parents known is written in (4), (5) and (6): 

1/2 a g + 1/2 a d + m2 (4) 

1/2 a s + m i (5) 
m o (6) 

In (4), n»2 is the Mendelian sampling deviation and its variance is equal to: 

Var(m 2) = 1/2 o 2
a (1 - l/2(F g + F d ) ) (7) 
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(Foulley and Chevalet (1981)) where o 2
a is the additive genetic variance of the 

population from which the breeding values were sampled and F s (F d) is the 
? 

inbreeding coefficient of the sire (dam), such that Var(a s) = a a(1 + F g ) . The 

variance of mj , Var(m^) can be shown to equal: 

Var{n»|) = 3/4 a 2
a ( l - 1/3 F g ) (8) 

where F s is the inbreeding coefficient of the only known parent, the sire. 

The variance of m Q , Var(m Q) is equal to 

Var(m 0) = o 2
a (9) 

The Mendelian sampling deviation, m 2 in (1) can also be viewed as the sum of 

the deviations of each parental gamete, with respective contributions of 

1/4 o 2
a ( l - F s ) and 1/4 o 2

a (1 - F d ) to Var (m 2). 

In the reduced animal model, animals that have no progeny are called non-parent 

records, and are written in terms of equations (4), (5), or (6), depending on the 

number of known parents, and this approach leads to having to solve directly, only 

the breeding values of animals that have progeny, which are called parent records. 

This is particularly beneficial in a species like pigs, where most animals 

contribute as non-parents and therefore savings in computing costs can be 

substantial. 

The introduction of groups in the reduced animal model leads to changes in (5) 

and (6). With one parent known, (5) becomes: 

a * Q = 1/2 a* s + 1/2 g d + m{ (10) 

With both parents unidentified, (6) becomes: 

*o = 1 / 2 g s
 + 1 / 2 8d + m o ' ( 1 1 ) 

If both parents are identified, the effect of groups is included in the 

parental contribution, and thus (4) still holds, provided that the breeding values 

ire interpreted as in (3). Absence of pedigree information on sire or dam must be 

supplemented with information on the group which the missing parent originates 

E rom. 



8 

The repeatability reduced animal model is written in matrix notation as 

fo1lows; 

yf = Xb + G f g + Z f 

G o T 

where, 

j£ is the vector of parental records; 

Yo is t h e vector of non-parent records; 

b is the vector of all fixed effects (for parental and nonparental records); 

a f i s t h e vector of random parental breeding values; 

g is the vector of fixed group effects; 

tn is the vector of random Mendelian sampling deviations; 

p is the vector of random permanent environmental effects; 

e is the vector of random pure environmental effects. 

X, G f , G 0 , Zf, M and W are known design matrices and T is a matrix whose number 

of rows is equal to the number of rows in y Q, and number of columns equal to the 

number of elements in a f , with row elements equal to 1/2 or 0, relating 

non-parental to parental breeding values. The vector of non-parental breeding 

values (a* D) is from (3) and (12): 

a * o = T o a*f + (Q 0 - T 0 Q f ) g + B (13) 

In (13), we notice that a* f = QF g + a f , and that QQ - T0QF = O if the non-

parent has both parents idenfified. The matrices Q{ and Q 0 result from 

partitioning Q in (3) such that parent records precede non-parents. Q0 is of order 

(number of non-parental breeding values x number of groups), Q f has order (number 

of parental breeding values x number of groups) and I 0 is a subset of T which 

associates non-parental with parental breeding values and has order (number of 

non-parental breeding values x number of parental breeding values). 

Thus: 

a " f = Qf g + a f 

Qo a o 

The expected vajue of (y f yD) in (12) is assumed to be equal to 
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Xb + g, and the second moments of the model are: 

= D o
z 

= I 0
2 

5 
Var(a f) = A f 0 a 

Var(m) 

Var(p) 

Var(e) 
= I o' 

(14) 

(15) 

(16) 

(1?) 

where, 

A f is the additive genetic relationship matrix among parental breeding values; 

2 
D is a diagonal matrix whose elements are given by (7), (8) or (9) with a a 

deleted; 

I is the identity matrix, o 2
a is the additive genetic variance of the 

2 2 
population from which the base animals were conceptually sampled, a p and a e are 

the variance due to permanent environmental effects and due to pure environmental 

effects, respectively. All covariances between a£, m, p and e are zero. 

The heritability (h 2) and repeatability (r) are defined as: 

,2 = „2 a £_/(o 4_ + a ' 

r = ( 0 % +
 a in) / ( a a + + °%> 

(18) 

(19) 

Letting Z' = (Zf T)' and G' = (G f G Q ) ' , then the mixed model equations 

corresponding to the model are: 

r 1 (20) X'X X'G X'Z X'M X'W 6 = x'y 
G'X G'G G'Z G'M G'W g G'y 

Z'X Z'G Z'Z+A f
_ 1kj Z'M Z'W % Z'y 

M'X M'G M'Z M ' M + D _ 1 k 2 M'W m M'y 

W'X W'G W'Z W'M W'W+Ik 3 P _ W'y 

where, A 1
f is the inverse of the additive genetic relationship matrix among 

parental breeding values, 

k! = k 2 = o 2e/o 2a = (l-r)/h 2 

k 3 = a2e/a2p = (l-r)/(r-h 2
) 

( 2 1 ) 
(22) 
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Under the conditions of the model described above, the system in (20) provides 

best linear unbiased estimators (BLUE) of estimable functions of fixed effects and 

best linear unbiased predictors (BLUP) of random effects (Henderson, 1973). 

In (20) the matrix G is dense and therefore all the blocks containing G will be 

costly to build. The resulting dense coefficient matrix is also computationally 

demanding to solve iteratively. Secondly, the predicted breeding values as defined 

in the group model are a* f = Q f g f + a f , and these are not directly obtained from 

(20). Quaas and Pollak (1981) have suggested a transformation that leads to a 

computationally less demanding system of equations. 

Define a matrix T*, such that: 

T* I O O O O 

O I O O O 

0 Q f I 0 0 

0 0 0 1 0 

0 0 0 0 1 

Then, inserting T* ]T* between the coefficient matrix and the solution vector 

in (20), and premultiplying both sides by ( T * - 1 ) ' , one obtains: 

X'X X'L X 'Z X'M 

L'X L'L+Q' fA
 1

f Q f k 1 L 'Z-Q ' fA- V l L'M 

Z'X Z'L-A" fQfkj Z "Z+A V i Z'M 

M'X M'L M 'Z M ' M + D _ 1 k ; 

W'X W'L W 'Z W'M 

where L = G - ZQ f = G f - G f = 0 

G 0 TQf G 0 - TQ f 

X'W 

L'W 

Z'W 

M'W 

W'W+Iki 

b = X'y 

g L'y 

â*f Z-y 

A M'y 

P M'y 

(23) 

The matrix L is equal to 0 when non-parent records have both parents identified 

and thus all blocks in (23) containing L become 0. 

From (13), solution to non-parent breeding values are obtained from (24): 

S * o = T 3 * f + (G 0 - T Q f ) g + fi " ( 2 4 ) 

A remarkable property of the system in (23) is that Q f does not have to be 

built up explicitly. Quaas (1988) shows how the structure of Q f and A - 1 can be 
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exploited so that the blocks containing Q f can be constructed as records are read 

in, following a given set of rules. 

The predicted value of individuals' future records is given by 5* + p. where 

S*' = (â* f â* 0)'. 

Inspection of the coefficient matrix of (23) shows that M'M + D _ 1 k 2 and W W + 

Ikj are diagonal matrices. Therefore, to reduce the size of the coefficient 

matrix, the equations belonging to p and m can be absorbed. This absorption 

process leads to the system of equations (25): 

X'PFL X'PFX 

L'PFX 

Z'PFX Z'PFL 

L'PFL + Q'fA 1fQfkj 

-1 1fQf ki 

X'PFZ 

L'PFZ-Q'fA ^ k j 

Z'PFZ+A f Kl 

b X'PFy 

g L'PFy 

â*£ Z'PFy 

(25) 

where, 

W 

I - M(M'PM + I k 2 )
 1 M'P 

Solutions to non-parental breeding values and to permanent environmental 

effects are obtained using back-solving techniques. To solve for m and then for a* 

us ing (24), we proceed as f ol lows. Absorbing the equation for p in (23) and 

solving for m yields: 

(M'PM + D ! k 2 )
 1 (M'Py - M'PXb - M'PLg - M ' P Z i * f ) (26) 

It can be shown by expansion of (26) that the i t h element of m is given by: 

m . = h. c. (.£ Y. . - .E x b - n.(v 1/2 g + v ,1/2 g ) -
i i l j = l l j j -1 l j i s m d n 

- n.((1-v ) 1/2 I* + (1-v,) 1/2 a*,)) (27) 
I S S Q U 

where h£ = 1 if individua1 i has one or more records, 

= 0 if it has no record ; 

C£ = k 3 / ( n i k 3 + d £ k 2 (ni + k 3)) 



In (27), 

k 2 = (1 - r)/h 2; 

k 3 = (1 - r)/(r - h 2 ) ; 

= number of records of individual i; 

d i = inverse of the i t h element of D, where the elements of D are given in 

(7), (8), and (9) with a 2
a deleted; 

Yjj = the jth record of individual i; 

*ij = row of matrix X corresponding to jth record of individual i; 

6 = solution vector of fixed effects in (25); 

V S ( v d ) = 1 if sire (dam) of i not known or 

= 0 if sire (dam) of i is known; 

g m ( g n ) = group effect of parent m (n); 

3 * s ( a * d ) = predicted breeding value of sire (dam) of i. 

If in (23) p is not absorbed, then the solution for fi^ is as in (27), but with 

c i = ( n i + d^k2) 1 and with -n Lp^ included in the term in brackets. 

With m available, solution to non-parental breeding values are readily obtained 

from (24). For example, for the i t h non-parent with parental predicted breeding 

values a* s and a"'d, 

a* £ = (l-v s) 1/2 a* s + (l-v d) 1/2 t * d + v s 1/2 g n + v d 1/2 g m + (28) 

When the non-parent does not have a record, the estimate of its Mendelian 

sampling deviation is zero and its predicted breeding value is obtained from (28) 

with m£ deleted. 

The solution for the permanent environmental effects is obtained directly from 

(23). The last equation in (23) is: 

P = ( W W + I k 3 )
_ 1 (W'y - W'Xfi - W'Lg - W'ZS* f - W'Mm) (29) 

By expansion of (29), it can be shown that the i t h element of p is: 

Pi = wi h i ( . | j Y.. - .|j x.. 6 - „. a*) (30) 

where w^ = l/(n£ + k 3 ) and all other terms are identified in connection with (27). 
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If i is a non-parent, a*£ is obtained from (28). 

If an individual does not have a record, the estimate of its predicted 

permanent environmental effect is zero. 

From a computational point of view, it should be stressed that the system of 

equations (25) can be built directly, without having to actually carry out the 

absorption of m. This is achieved by reparamenterising model (12) as follows: 

Yf 

y0 

X f 

x o 

b + G f 

G 0 

Z f 

T 

(31) 

where Var I f 0 

0 Da 

2 
a e 

(32) 

2 a / a 2 e + I, 

Writing the mixed model equations for (31) and (32), applying the 

rransformation suggested by Quaas and Pollak (1981) and absorbing p leads to (25). 

4. The model for prediction of breeding values for m b e L i Q g l l l i g M i • 

The model that had been in operation during 1988/89 is: 

Y i j l n o = H i + S j + K 1 + a i j I n + PijIn + eijlno ( 3 3 ) 

where, 

Y i j l n o 
: t h e o

t h
 r e c o r d ( n u m b e r o f b o r n p i g l e t s ) o f s o w n f r o m b r e e d x p a r i t y 

1, f a r r o w i n g in s e a s o n j , b e l o n g i n g t o h e r d x y e a r x t y p e of 

fertilisaton i; 

H £ : f i x e d e f f e c t o f h e r d x y e a r x t y p e o f f e r t i l i s a t i o n i ( t y p e o f 

fertilisation: artificial insemination or natural mating); 

Sj : fixed effect of season j (4 seasons per year); 

Ki : fixed effect of breed x parity number 1; 

aijIn- random effect of breeding value of animal n; 
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PijIn• random effect of permanent environmental effect of animal n; 

e i j l n o : random residual effect of record o. 

Higher interaction terms that are likely to be biologically appropriate, like 

H S i j ' c o u l d n o t b e fitted because the number of observations in a large proportion 

of this herd x year x type of fertilisation x season interaction becomes too 

small. Similar considerations precluded inclusion of breed in this interaction. 

During 1990 this model has been extended to include groups. This implies that 

(33) is changed to (34): 

Y i j k l m n o = H i + S j + K k l + ¿ x m C k m + a i j k l m n + P i j k l m n + « i j k l m n o (34 ) 

where the parameters are defined in connection with (33) . The parameter K k l has 

explicity two subscripts where k represents breed and 1 represents parity number, 

and Gjgjj, the mth group effect is nested within breed k. The known constant x m , is 

the contribution of the mth group, such that I x m = 1. 

The total genetic value, is given by: 

a * i j klmn = ^ G k m + a i j klmn (35) 

For non-parent records, a i j k l n in (34) is substituted by (a s + a d ) / 2 + m i j k l m n , 

where a s (a d) is the breeding value of the sire (dam) of n , and the term 

in m is the Mendelian sampling effect. Collecting the first three terms in (34) in 

a vector b, the fourth in g and so on, (34) is written in matrix notation as shown 

in (12) with first moment equal to Xb + Gg and second moments given by (14), (15) 

(16), and (17). The heritability and repeatability of total number of liveborn 

piglets are for the time being assumed to be 0.10 and 0.15, respectively. It is 

assumed also that these figures hold with all possible combination of fixed 

effects in the model. 

The inverse additive genetic relationship matrix among all animals in the 

system is computed following an algorithm by Henderson (1976). The program can 

easily accommodate Quaas' (1976) algorithm to allow for inbreeding, but at higher 

computing cost. 

5. Assumptions of the model 

Two sets of assumptions will be discussed. One set is rather general and is 

associated with the mixed model equations (20) and (25). The other set is 
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particular to the model described in section 4. These two sets will be discussed 

in turn. 

The starting point in (1) is that the vector of observations y is a function of 

a set of variables that act additively. The variables in the vectors b and g are 

fixed effects, while those in the vectors a and e are random effects. That is, a 

and e are each considered as one sample from a population of vectors a and e which 

has been drawn into the sample space associated with the data vector y. The random 

vectors a and e determine that the data vector y is also regarded as a random 

variable sampled from a conceptual population. In repeated sampling, the vectors a 

and e have mean zero and the vector y has a mean of Xb + Gg and a variance given 

by the first row and column of (2). 

The sampling of a and e is assumed to be carried out at random - selection as 

it operates in a breeding program is not allowed for. 

The vector g has parameters representing group effects. Knowledge of an 

animal's ancestors defines the relative contribution of groups to its performance. 

Pedigrees must be complete and the parents of those animals that are not 

identified must have an identified group of origin. These unidentified parents are 

assumed to be average representatives (i.e. unselected) from their groups. Groups 

combine additively on their effect on performance. 

Model (12) does not introduce new concepts. Here the stochastic variables are 

a f , m , p, and e. The derivation of (20) from (12) assumes that a f , m, p, and e 

have null mean and that their covariance matrix is known at least to 

proportionality. In our context, this means that the heritability and 

repeatability are known without error. 

In going from (12) to (25), no assumption is made about the form of the 

iistribution of the stochastic elements in the model. It is assumed though that 

the conceptual populations they are sampled from have null means. This is 

acceptable for n , p, and e. The vector m represents deviations due to Mende 1 ian 

sampling. If there is no selection acting at the gametic stage, before or after 

fertilisation, then these deviations from the parental average should add up to 

zero. 
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The assumption that p and e are vectors sampled from populations with zerc 

expectation is not problematic. Permanent environmental effects and residua: 

effects are not likely to affect the records in any particular direction, 01 

average, especially when these effects are unspecified. 

Other set of assumptions implied in (12), (14), (15), (16), and (17) are that 

variances of random effects are constant across all levels of fixed effects that a 

strictly additive genetic model holds and that the correlation between records of 

the same animal is a constant (the repeatability) irrespective of whether the 

records are adjacent or further apart. 

Under these assumptions, given that the model is correct, solution of the 

system (25) yields BLUE (best linear unbiased estimators) of estimable functions 

of fixed effects and BLUP (best linear unbiased predictors) of random effects. If 

the variances of the random effects, or their ratios, are not known and one 

substitutes estimates of them, then the resulting solution to the random effects 

are not BLUP, but are still unbiased (Kackar and Harville, 1981). 

The assumption that the vector of genetic values, a f is a random sample from a 

population with a certain mean is not tenable when selection is known to have 

operated on a trait whose heritability is larger than zero. One wishes to know 

though, if there exists a set of conditions that if satisfied, lead to the result 

that the system (25) leads to predictors of genetic merit with good properties, 

even though the data have been generated by selection. This is a difficult problem 

which has not been totally solved yet. Henderson (1975) invoking early results by 

Pearson (1903) have shown that these set of conditions exist and that these are: 

a) the vectors of random variables in the model follow a multivariate normal 

distribution; 

b) the variances of the random variables, or their ratios, are known: 

c) selection does not operate across levels of fixed effects; 

d)selection does not operate on traits correlated with the data vector not 

specified in the model. 

The genetic model implied by (a) is one in which the metric trait is determined 
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by a very large number of additive (nonepistatic) loci. An important assumption of 

this model is that, with directional selection, gene frequency changes are 

infinites ima1ly small and changes in the additive genetic variance are due to 

joint disequilibrium (Bulmer, 1971) and in small populations, due to inbreeding. 

With finite number of loci, particularly with genes of large effects, the 

assumption of normality does not hold and with data spanning several generations, 

gene frequency changes may be substantial. Under these conditions, the predictors 

obtained from (25) are likely to be biased. 

The condition specified in (b) requires the correct specification of the 

covariance matrix of the random effects in the model. In the context of an animal 

model, this means that the relationship matrix among all the individuals in the 

data is complete and that the heritability in the population from which the base 

animals were conceptually sampled is known. If the heritability is not known, 

simulation results indicate that use of a REML (restricted maximum likelihood) 

estimator under an animal model in the solution of (25) leads to predictors of 

random effects with no detectable bias (Sorensen and Kennedy, 1986). 

Condition (c) implies that the data had been adequately corrected for fixed 

effects prior to selection or that selection operated within fixed effects. The 

introduction of groups in the model guarantees in fact that this condition is 

violated. In attempting to solve one problem - that is, acknowledging that animals 

originate from different populations - one introduces a new one: when breeding 

values are the selection criterion and these include a group effect, selection 

operates across fixed effects. 

Condition (d) requires that observed selection differentials were not the 

result of selection of a trait not specified in the model, and correlated with the 

vector y. Selection for daily gain within litters prior to sending pigs to a test 

station is an example of a violation of (d). 

Gianola et al. (1988) has recently questioned the validity of some of the 

assumptions of the Pearson model in the context of genetic selection. Using a 

Bayesian approach, they arrive at a set of conditions which are not all in 

agreement with Henderson's. Some of these points were further expanded by Im et 

al. (1989). 

The second set of assumptions relates more specifically to the model proposed 

for genetic evaluation of number of liveborn piglets in (34). 
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The most important of these assumptions are: 

the trait (number of liveborn piglets) is not influenced by the sire the sow i; 

mated to. 

It is fairly well established that litter size at birth is influenced by the 

litter's genotype and as such, the assumption of no paternal influence does not 

strictly hold. However, published analysis indicate that the proportion of 

variation in litter size due to sire of litter is very small (Christensen, 

1978; Van der Steen and Kock, 1987). 

an additive genetic model holds. This implies that the trait does not exhibit 

inbreeding depression or heterosis. 

There is ample data showing that litter size traits exhibit heterosis and 

inbreeding depression (Hill and Webb, 1982). These results are not compatible 

with a simple additive genetic model, but rather dominance and/or various forms 

of epistasis must be invoked. A unified mixed model approach which takes 

account of the effects of inbreeding and dominance on the mean and variance is 

not yet developed, although work in this area has started (MSki-Tanila and 

Kennedy, 1986; Smith and Maki-Tanila, 1990). 

the genetic correlation of the trait in different parities is 1. 

Vangen (1986) shows results that indicate that this hypothesis may not hold, 

and that the genetic correlations decrease as the distance between parities 

increases. On the other hand, in a recent review, Haley et al. (1988) conclude 

that genetic correlations between adjacent parities are high, although less 

than one, but the estimates that they quote imply that the genetic correlation 

between parities 1 and 4 is considerably less than one. They argue that the 

available estimates may be biased by selection. Until a multiple trait 

restricted maximum likelihood estimator of variance and covariance components, 

with an animal model, becomes available, the estimates must be interpreted with 

reservation. Even then, one could argue that estimates are biased by exclusion 

of non-additive gene action from the model. In view of the considerable 

computational difficulties associated with a multitrait evaluation system, one 

can take refuge in some of the conclusions of Haley et al. (1988) and justify 

the univariate approach as a temporary operational compromise. 
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1. the heritability and repeatability are known and equal to 10% and 15%, 

respectively, and these values hold for all breed x parity combinations and for 

all groups. 

Associating these sets of assumptions with what is known of the biology of the 

trait and with what goes on in a typical breeding program may help towards 

understanding the discrepancy often observed between observed and expected 

selection responses! 

6. Possibledevelopments o f t h e m o d e l 

Progress in the areas of biology, methods of estimation of genetic parameters 

and in computer science makes it possible to develop a more refined model for 

genetic evaluation of number of liveborn piglets. Recently, a REML (restricted 

maximum likelihood) algorithm using animal models has become available (Meyer, 

1989). This allows to test whether (a) and (d) hold. REML under an animal model 

provides estimates of genetic parameters with well defined statistical properties, 

especially when used in selected data given that the correct model can be 

specified. Statistical analysis could confirm whether genetic parameters are 

constant across breeds, and yield estimates that could be used as priors in the 

solution of the mixed model equations. Use of REML estimates obtained from the 

databank and used as variance ratios, would be a significant improvement over the 

present approach, where the heritability and repeatability used as priors are 

obtained from the literature. 

The performance of crosses among animals originating from different groups 

(countries) should be analysed for presence of heterosis. Should this be 

confirmed, the present model can be extended - at least from an operational point 

}f view - to allow for non-additivity. This can be accomodated including the 

expected proportion of heterosis in the model as a covariate. 

1 . A n example 

This example will illustrate the computation of breeding values and how some of 

-he expressions developed in section 3 are used. 

Consider the records of 14 animals shown in Table 1. There are two fixed 

jffects, A (with 2 levels) and B (with 3 levels), and animals 9, 10, and 13 have 

repeated records. 
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Animals 1, 2, 3, 4, 11, and 14 have both parents missing; 7, 8, and 10 have one 

parent missing. Even though these parents are unknown, one must assume that they 

originate from a given group. The groups of origin of the missing parents are 

shown in table 2. In this table, the sign " - " means that the parent is not 

known. 

Individuals 1, 2, 3, 4, 5, 6, and 11 are parents; the remaining individuals, do 

not have offspring and are therefore nonpatents. 

Assume the model for parent records is: 

Yijklm = A i + Bj + l x k G k + a k l + p k l + eijklm (35) 
k 

and for non-parent records, a i j k l is replaced by 1/2 a s + 1/2 a d + m i j k l , where, A 

and B are fixed effects, G are fixed group effects, a represents genetic values 

(random) and e is the residual peculiar to record m. For non-parents, their 

genetic value is written in terms of their parental genetic values (a s and a d ) and 

the Mendelian term, m. 

By collecting fixed effects A and B in a vector b, group effects in a vector g, 

the genetic values of parent records in a vector a f , Mendelian terms in m and 

permanent environmental effects in p, and ordering the data such that parent 

records precede non-parents, one can express (35) in the matrix formulation (12). 

rices T T o G f and G o a re 

1/2 0 0 0 0 0 0 ; V 1/2 0 0 0 0 0 0 

0 0 0 0 1/2 0 0 0 0 0 0 1/2 0 0 

0 0 1/2 1/2 0 0 0 0 0 1/2 1/2 0 0 0 

0 0 1/2 1/2 0 0 0 0 0 1/2 0 0 0 0 

0 0 1/2 1/2 0 0 0 0 0 0 0 0 1/2 1/2 

0 0 1/2 0 0 0 0 0 0 0 0 1/2 1/2 0 

0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1/2 1/2 

0 0 0 0 1/2 1/2 0 

0 0 0 0 1/2 1/2 0 

0 0 0 0 0 0 0 
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G'< 

G' = 

0 0 1 0 3 / 4 0 0 

0 0 0 1 1 / 4 0 0 

1 3/8 1/2 1/2 1/2 1/2 1/2 1/2 5/8 5/8 1/2 

0 5/8 1/2 1/2 1/2 1/2 1/2 1/2 3/8 3/8 1/2 

The second row of T corresponds to animal 8. The 1/2 in column 5 indicates that 

individual 5 is 8's parent. The second column of G ' Q gives the group contribution 

to 8. Individual 8's unknown parent originates from group 2 - this contributes 

ith 1/2 G 2 . The known parent, 5 is the offspring of 1 and 2. Individual 1 

contributes 1/4 to Gj, while 2 contributes with 1/8 to Gj and with 1/8 to C 2 . This 

results in individual 8's group composition of 3/8 Gj and 5/8 G 2 . The total 

»enetic value of 8 is thus: 

= 3/8 G| + 5/8 G 2 + 1/2 a 5 + mg. 

The variance of a*g is 1/4 o 2 a + 3/4 o 2 a = a 2 a . The elements of the diagonal 

latrix D are: diag D = (3/4 3/4 1/2 3/4 1/2 1/2 1 ), corresponding to the 

non-parental individuals. 

The inverse of the additive genetic relationship matrix among the 6 parent-

records is: 

i-l 3/2 1/2 0 0 -1 0 0 

1/2 3/2 0 0 -1 0 0 

0 0 3/2 1/2 0 -1 0 

0 0 1/2 3/2 0 -1 0 

-1 -1 0 0 2 0 0 

0 0 -1 -1 0 2 0 

0 0 0 0 0 0 1 

Assuming that the heritability and repeatability are h^ 0.10 and r = 0.15, 

:hen ki = k-i 8.5 and k-, 17. 
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The coefficient matrix of (25) is: 

5.55 0 

5.60 

2.45 2.45 0. .65 0.85 0 .43 0.43 0 1.93 0.98 0.94 0 0 

2.33 1.48 1, .79 0 1. . 16 0 0 0.74 0.94 1.16 1.16 0.4: 

5.27 -0.38 -0. 12 0.43 0. ,37 0.43 0 0.70 0.33 1.31 0.79 0.4: 

4.42 -0. 12 0.43 0, ,79 0 0 1.64 0.33 0.37 0.37 0 

2. 68 0 0. ,43 0 0 0.33 1.27 0.43 0 0 

21.68 4 . .46 -8.29 -4.25 -8.50 0 0 0 -4.2! 

13. 54 0 -4.25 0.37 -8.50 0.21 0 -4.2! 

SYMMETRIC 12.96 4.25 0 0 -8.50 0 0 

12.75 0 0 -8.50 0 0 

14.55 4.74 0 -8.50 0 

14.18 0 -8.50 0 

18.53 0.37 0 

17.58 0.21 

8.71 

The right hand side of (25) is: 

(48.92 45.56 35.87 35.77 22.85 8.08 14.84 3.83 0 22.30 15.44 18.14 8.89 2.98) 

The solution vector is: 

¿1 = 4 .89 

h 4 .38 

H 1 .89 

h 3 24 

b3 4 14 

Gl 1 64 

G 2 0 25 

â*l 1 71 

â* 2 0 98 

â* 3 1 50 

â* 4 0 09 

â * 5 1 37 

â*6 0 79 

0. 94 

The solution to 

7, C 7 = 0.0769, n ? 

1.64) - 1 ((1/2) 1 

the Mendelian sampling terms is obtained from (27). For anima 

= 1 and the term in brackets is: 9 - 4,89 - 1.89 - J((1/2) 

-71) = 0.55. Then, m ? = (0.0769)(0.55) = 0.04. 
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The remaining Mendelian sampling terms are: 

itg = 0 . 1 3 = 0 . 0 3 ri 1 0 = 0.02 

"12 = - 0 . 0 1 m 1 3 = - 0 . 0 0 m 1 4 = 0 . 0 9 

The solution to the total genetic values are obtained from (28). For animal 7, 

noting that v s = 0 and v d = 1, we have: 

a* 7 = (1/2) 1.71 + (1/2) 1.64 + 0.04 = 1.72. 

The remaining solution to the total genetic values are: 

1* 8 = 0 . 9 4 a* 9 = 0 . 8 3 a * 1 0 = 0 . 9 0 

!*j 2 = 0.86 a * 1 3 = 1.08 a * 1 4 = 1.04 

The solution to the total genetic values can also be obtained from (13): 

1 .72 

0.94 

0.83 

0.90 

0.86 

1.08 

1 .04 

Finally, the vector p is obtained from (29) or (30). For animal 7, w 7 = 0.055, 

:he term in brackets in (30) is (9 - 4.89 - 1 . 8 9 - 1 (1.72)) = 0.5 and therefore 

>7 = w 7 (0.5) = 0.027. The remaining 9 permanent environmental 

iffect solutions are: 

>3 = -0.09 p 4 = -0.09 p 5 = -0.01 

i8 = 0.08 p 9 = 0.03 p 1 0 = 0.02 

»12 = -0.01 p 1 3 = -0.00 p 1 4 = 0.05 

a* 7 = 1/2 0 0 0 0 0 0 1 71 + 1/2 0 I .64 + 0 04 = 

a* 8 
0 0 0 0 1/2 0 0 0 98 0 1/2 0.25 0 13 

0 0 1/2 1/2 0 0 0 1 50 0 0 0 03 

3*10 0 0 1/2 0 0 0 0 0 09 0 1/2 0 02 

a*12 0 0 0 0 0 1/2 1/2 1 37 0 0 -0 01 

s*13 0 0 0 0 1/2 1/2 0 0 79 0 0 -0 00 

3*14 0 0 0 0 0 0 0 0 94 1/2 1/2 0 09 
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TABLE 1. 

Example. Records of 14 animals. 

ID SIRE DAM A B Measurement 

1 

2 

_ - - _ _ 

3 - _ 1 2 8 

4 _ . 2 3 7 

5 1 2 1 1 8 

6 3 4 - - _ 
7 1 - 1 1 9 

8 - 5 2 3 11 

9 3 4 1 1 8 

9 3 4 1 2 9 

9 3 4 1 3 10 

10 3 - 2 1 7 

10 3 - 2 2 9 

11 - - - - _ 
12 6 11 2 1 7 

13 6 5 2 1 7 

13 6 5 2 2 9 

14 - - 1 2 10 

TABLE 2. Group of origin of the unknown parents 

I S Paternal group Maternal group 

1 1 1 

2 i 2 

3 1 1 

4 2 2 

7 - 1 

8 2 
10 - 2 

11 l 2 

14 2 1 
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