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Summary
The duration of micro-lysimeters for measuring bare soil evaporation is not known a priori, 

where duration is defined as the number of days during which measured evaporation is similar 

to the evaporation from the surrounding soil surface. A physically based mathematical model 

on bare soil evaporation is described and used to simulate evaporation from a bare silt loam 

soil and evaporation from a 15 cm long micro-lysimeter. The results indicate for an initially 

wet soil the duration of 3 days and 6 days under high and low evaporative demand, 

respectively.

Keywords: evaporation, micro-lysimeters, modelling, unsaturated water flow.

Danish summary
Varigheden af mikro-lysimetre til måling af fordampning fra bar jord er ikke kendt på 

forhånd. Varighed skal i denne sammenhæng forstås som antal dage, hvor den målte 

fordampning er lig fordampningen fra den omkringliggende og uforstyrrede jordoverflade. En 

fysisk baseret matematisk model er beskrevet og anvendt til simulering af fordampning fra en 

bar leijord og fordampning fra et 15 cm langt mikro-lysimeter. Resultaterne indikerer, at 

varigheden er 3 og 6 døgn under henholdsvis høj og lav potentiel fordampning, når jorden ved 

begyndelsestidspunktet er ved markkapacitet.

Nøgleord: fordampning, mikro-lysimetre, modellering, umættet vandtransport.
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1. Introduction
Bare soil evaporation and the soil water content in the upper soil layers is important in relation 

to the germination of seeds, the activities of micro-organisms — e.g. fungi — and the timing 

and effect of soil cultivation.

Different methods are known for measuring bare soil evaporation. One is the use of micro- 

lysimeters, which are small tubes vertically installed in the soil and sealed at the bottom (Boast 

and Robertson, 1982). A drawback with this method is that the duration is not known a priori.

The duration is in this context defined as the number of days during which evaporation is 

similar to the evaporation from the surrounding soil surface.

The duration can be expected to depend on the hydraulic properties of the soil, the initial 

water content, the length of the micro-lysimeter and evaporative demand. Boast and Robertson 

(1982) compared different length of micro-lysimeters and concluded from laboratory 

experiments the method to be valid for 1 or 2 days. Shawcroft and Gardner (1983) stated that 

similar behaviour for a micro-lysimeter and the surrounding soil can be expected only if the 

soil water content and the water distribution are the same in and outside the micro-lysimeter.

The main objective in this study is to evaluate the duration of a 15 cm long micro-lysimeter 

within a drying period from simulations with a physically based mathematical model on bare 

soil evaporation. Also the model and the applied numerical approximations are described.
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2. Micro-lysimeters
Micro-lysimeters similar to the design shown in Figure 1 were used in a field experiment at 

Foulum during 1991.

Tube of stainless steel

|4 -  8,5 cm

J

15 cm

Rubber stopper

Figure 1. Outline of a micro-lysimeter.

Daily values of soil evaporation were achieved from the following procedure. The tube was 

installed in the soil with the upper rim levelled at the soil surface. Then the soil filled tube 

was removed and a rubber stopper was inserted level with the bottom rim of the tube. The 

weight of the micro-lysimeter was determined and the lysimeter was replaced in the hole left 

in the soil. Next day the micro-lysimeter was removed for weighing. An estimate of daily 

evaporation was then calculated from the daily weight loss of the micro-lysimeter.

For several reasons new micro-lysimeters were established every day. The most important 

reason was that the duration of a micro-lysimeter was not known a priori. Some of the "old" 

micro-lysimeters were used in parallel with the new ones in periods of 1-15 days. 

Comparisons of the evaporation data from the new and "old" micro-lysimeters could give an 

estimate of the duration.
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Shawcroft and Gardner (1983) compared evaporation from micro-lysimeters and evaporation 

from the surrounding soil surface. The latter was calculated from a soil water balance method, 

where the soil-water content was measured gravimetrically from composite 1-cm-increment 

cores sampled daily. Another approach is to assess the duration from model simulations, cf. 

Sections 3.2. and 4.
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3. Bare soil evaporation
Water exchange from bare soil to the atmosphere is a physical complex phenomena overall 

controlled by the radiation from the sun.

3.1. Physical processes
The one-dimensional steady state energy balance for the soil surface is given by

Rn = kE + H + G W

where Rn is net radiation, A.E and H are the latent and sensible heat flux density and G is the 

soil heat flux density, all in Win'2. By convention Rn is positive when directed towards the 

soil surface and A.E, H and G are positive when directed away from the soil surface.

The latent heat flux density is equivalent to the rate of evaporation. The evaporation process 

can be described as the change of the state of water, where water molecules by use of energy 

slip from the liquid phase into the air phase.

There is a strong feedback between the fluxes in equation 1 and the soil surface conditions and 

properties. Net radiation is dependent on the surface albedo and the surface temperature. The 

albedo and the surface temperature are affected by the specific humidity at the surface. Latent 

and sensible heat fluxes are governed by the surface gradient in specific humidity and 

temperature, respectively. The turbulent exchange coefficients for latent and sensible heat are 

dependent on windspeed which on the other hand is affected by the roughness of the surface. 

These examples also depict a mutual interrelation between the fluxes and the surface 

conditions. A relational diagram is shown in Figure 2.

In wet soils evaporation takes place at the soil surface. In drying soils where the level of water 

filled pores slowly moves downwards evaporation takes place into the air phase of the soil.
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Figure 2. Relational diagram of the soil-atmosphere system. Rectangles for main state 
variables, valves for rates and fluxes, circles and ellipses indicate auxiliary soil and 
atmospheric boundary layer variables. Solid lines represent flows of entities, broken lines 
flows of information. Boundary conditions are underlined. Within each column, feedback 
mechanisms between flux and state variable (gradient) — usually indicated by broken lines — 
have been omitted (Berge, 1990).

The flow processes in soil are mainly water flow in the unsaturated zone to the evaporating 

surface but also diffusion and convection of water vapour to the soil surface. The further 

transport of water vapour from the soil surface is governed by laminar and turbulent exchange 

processes. The soil-atmosphere pathway for water is shown in Figure 3.

Modelling this complex system to describe bare soil evaporation is not the aim of this study, 

but merely to adapt a well-known physically based model including unsaturated water flow 

and evaporation, cf. Section 3.2.
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Ra=1/(C^Ua) Atmosphere

Figure 3. A schematic description of the soil-atmosphere pathway for water. q„ qg and q, are 
specific humidity. R(0i, and R„ are diffusion and aerodynamic resistance to the flow of water 
vapour (adapted from Mahfouf and Noilhan, 1991).

3.2. Modelling
The mathematical model used in this study will include only few of the physical processes 

involved in bare soil evaporation. More comprehensive modelling will be undertaken in the 

thesis within this Ph.D. study.

The model is adapted from Hansen et al. (1990). It includes a physically based description of 

isothermal water flow in the unsaturated soil zone (explanatory sub model) and a simple 

description of the evaporation process (descriptive sub model). It is believed, however, that 

this model can explain the major part of the water exchange especially when the soil is wet. 

Therefore it is also believed that simulations can give a reasonable estimate of the duration 

of a micro-lysimeter, which is the main objective of this study.

In the model Darcy flow of water is assumed. The one-dimensional flow is then described by
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q = -  K rø  + K tø
dz

(2)

where z is the soil depth (cm) positive downwards, i|r is the matric potential (cm), K(ijr) is the 

unsaturated hydraulic conductivity (cm3 cm'2 hour') and q is the water flux density (cm3 cm'2 

hour'1) positive in the positive z-direction. Flow of water satisfies the law of conservation of 

matter which for incompressible water and non-deformable soil is given by

30 = _ dq (3)
dt dz

where 0 is the volumetric water content (cm3 cm"3) and t is time (hours). Introduction of C(i|r) 

and combination of (2) and (3) leads to the governing partial differential equation (PDE) 

named the Richards equation

c r o *  - 4 - (K (D p )  -  m
dt dz dz dz

where

dty

is the specific water capacity (cm1) defined as the derivative of a single valued water release 

function. Thus hysteresis is not included.

The PDE can be solved for known initial and boundary conditions. In this study numerical 

methods are applied because of the non-linearity of the PDE, cf. Section 3.3.

The initial conditions are given by

i|r = Tjr0 for 0 < z < z, and t = 0 (5)

where i|f0 defines the matric potential at a well defined water content given by the iJr-0 

relationship and z, is the soil depth at the lower boundary.

Only specific boundary conditions will be considered in this study:
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Upper boundary

q = - E„ for z = 0 and t > 0

Lower boundary

(6)

q = qg for z = z, and t > 0

or

(7)

q = 0 for z = zm and t > 0 (8)

where E„ is the actual evaporation (cm3 cm'2 hour'1) positive in the negative z-direction, qg is 

the gravity flux density (cm3 cm'2 hour'1) and zm is the depth of the micro-lysimeter.

Assuming the flow at the lower boundary to be governed by only the gradient in gravitational 

potential is appropriate when the ground water table is far away from the modelled depth- 

domain (Jensen, 1983).

Actual evaporation depends on the hydraulic conditions in the soil and the evaporative demand 

of the atmosphere and is not known a priori. A solution is then given by

is the maximum possible flux density. Ep (cm hour'1) is the potential evaporative demand of 

the atmosphere calculated from equation 10 (Hansen et al., 1990).

where is the daily potential evaporation (cm day') and t is the hour of the day, t = 1 ,2 , 

... 24. The parameter E^ is in this study assumed constant, E^ e [1,5].

E E i ,  0P P

m in tk lv E ] £  > 0
(9)

where

(10)
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The maximum possible flux density q, is calculated in accordance with Hansen et al. (1990) 

by assuming the water content at a minimum level 0O at z = 0.

The hydraulic parameter function K(i|r) is developed using the model of van Genuchten (1980). 

The water release function 0(h) is in this model given by

6(h) = (0 -  0j[l + (a h ) f  + 0 O 1)

where h is the tension (cm) (=  -ijr), 0, and 0f are the saturated and residual (e.g., at wilting 

point) water contents (cm3 cm'3), respectively. Assuming that m = 1 - n'1 and 0, and 0, are 

known, then n and a (cm1) can be found by non-linear regression applied to measured values 

of (h,0(h)).

The inverse function h(0) is found from equation 11 as

h(6) = — 
a

0 - 0
0 - 0

The water retention function is then given by

t|<0) = -  h(6)

The unsaturated hydraulic conductivity is calculated from equation 14.

. [l -  (a h)"~' • [l + (a h fXm  = K}
[l + (a hy

( 12)

(13)

(14)

where K, is the saturated hydraulic conductivity (cm3 cm'2 hour'1). The mathematical derivation 

of equation 14 is given by van Genuchten (1980).

The capacity function is found by differentiation of equation 11 with respect to h.

C(h) = -  m (0s - 0r) [l + (a h)"]""' n (a h y ' a

The specific water capacity expressed as a function of i|r is found by
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C(i|r) = - C(h) (16)

3.3. Numerical approximations
The Richards equation (4) can be solved analytically when special initial and boundary 

conditions are known or in fact only "quasi-analytical", because some coefficients in the 

solutions are obtained by numerical methods.

Solution of equation 4 for known initial and boundary conditions can in general only be 

obtained by using numerical methods.

A widely used method is the finite difference scheme where derivatives are approximated with 

their difference form.

The difference notation j, i, Azj and Ati+I can be visualized as a grid superimposed on the 

depth-time domain as shown in Figure 4.

In this notation used by Jensen (1983) and Hansen et al. (1990) i|r- represent iJr(Zj,t1) or, from 

the retention curve, the water content 6(Zj,t1) in the depth interval or layer Azj to time t‘.

Soil surface z0
j = l z,
j=2 z2
j=3 z3

j-1 Zj.
j Z|
j+1 ‘ i+ l

j=N zN

i=0 i=l i=2
t° t1 t2

-LZy ■

-AZ:

-Azm

Depth

t'+1 i Upper boundary 
-------------- ►Time

<— At1'

♦L,

*i

*i+. —  I *i:i

T Lower boundary

Figure 4. Finite difference calculation nodal points superimposed on the depth-time domain.
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The derivative with respect to time in (4) at depth zs is approximated by a forward difference

(17)
at a  t M

and the space derivative in (3) can be approximated by a centered difference at depth zi to 

time ti+1,

_ dq = _ C  -  g “  
dz A Zj

Or the approximation can be centered in both space and time.

(18)

^  -  - 'A
dz A Z,

(19)

Using centered values of K(ijr), the flow variables on the right sides of (18) and (19) are given 

by

-  ürM
V - 1

7 - z MJ j - 1

K.

z j <

+ k M  

+ * (c)

(20)

(21)

(22)

(23)
z j  -  z j ->

With C(i|r) centered in time substitution of equation 17, 18, 20 and 21 into (4) leads to the 

"fully" implicit finite difference approximation where evaluation of the space derivatives are 

put forward in time, cf. equation 24.

17



(24)

With C(tJt) centered in time substitution of equation 17, 19, 20, 21, 22 and 23 into (4) leads 

to the Crank-Nicolson finite difference approximation where the space derivatives are 

evaluated at time ti+'\

The "fully" implicit formulation 24 is first and second-order accurate in time and space, 

respectively and thereby less accurate than the Crank-Nicolson formulation 25 which is 

second-order accurate in both time and space (Chapra and Canale, 1988). Both methods can 

be characterized by being unconditional stable and convergent for At-0 and Az-0 when 

applied to linear parabolic differential equations.

In the case of the non-linear Richards equation the approximations lead to non-linear finite 

difference equations, which are not straight forward to solve.

Equations 24 and 25 can be rearranged to explicitly express the unknown dependent variables 

which are put foreward in time ti+l to the left side in the equations and the known variables 

to time t' to the right side. Then with (zj+1-zj)=(zj-zj.,) = Azj = Az, equations 24 and 25 can be

(25)

18



expressed as linear algebraic equations valid for each nodal point, cf. (26) 

respectively,

where

öür'*1 + = r

aj =
m 1;*)
(Az)2

(A z)2

(A z)2

or

where

A u r 1 + B l ir1 + D Ur'*1 = R 
j  * j - i j  j  ’ V  i j

A -  -  K ( O
' (A z)2

B,
_  2 c  ( t r )  ^ k  f e j  + k  (* ;:)

A t M (A z)2

D -  -  *  M
(A z)2

and (31) 

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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R,
(Az)2

K f e )
(A z f

m-i
_ *(<d „,, _ * M  - k (»;:)

( i z ) ‘

*(«d - « ta ll
T;*i

(35)

As mentioned the finite difference equations are difficult to solve because of the non-linearity. 

The hydraulic parameter functions C(ijr) and K(i|r) are assumed constant within a time interval 

and depend on the unknown at time ti+* at one or two depth levels, respectively, cf. equation 

26 and 31. Different approximations have been proposed to overcome these problems.

Feddes et al. (1978) approximated i|ri+w by extrapolations of some functional relationship 

involving »Jr11, i|r! and time step size At and Ati+I, cf. equations 36 and 37.

i + A L L
2 A t ' 

A t ‘*'
(< • + *') - (36)

°-25 fe + *'")

= 0.5 1 + A r 1

0.25

2 A t '  
A t w

(*;+ <■) - (37)

A t ‘ (♦r *
From these approximations, the unsaturated hydraulic conductivity can be found from the 

functional relationship K(i|r), where K(-i|r) = K(h) cf. (14).

To assess the capacity C(i|rj+W) Feddes et al. (1978) applied the following approximation

= 0.5 (*;;* + * ; ; j  (38)

With these approximations Feddes et al. used the Crank-Nicolson method to solve the 

Richards equation. To overcome convergence and stability problems Feddes et al. restricted 

the time step size to the following conditions given by Zaradny (1978).
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r

Ar'*1 < 6 A z  (39)
k r

where q is the actual flux at the lower or upper boundary at time t1 and e is a factor where 

0.015 <  e < 0.035. For high value of q the lower value should be assigned to e and vice versa.

Jensen (1983) used an iterative algorithm to calculate the hydraulic properties at time ti+l\  

which he found could eliminate stability and convergence problems when used in combination 

with the "fully" implicit or the Crank-Nicolson method. This approach will be described in 

the following and be implemented in the simulation model. Nodal points involved in 

calculation of the space averages K(iJrj±1J  are shown in Figure 5.

♦ j - i  tj-l --------- •------------------- 1---  Az
------------------------® ----------------------------------------------------------

t j  A
J --------- •-------------------- 1--  AzK(*j+Jj) ▼

------------------------® ----------------------------------------------------------
*3+1 t3+1 --------- •-------------------- 1--  Az

▼

Figure 5. Nodal points ( • )  involved for calculation of K(i|rj±Vi) (®).

Variations in soil properties and water content among calculation layers Azj mean that 

estimation of K(i|rj±,J is not simple especially because the K(i|r) relation is highly non-linear. 

Often used weighting methods are the arithmetic and the geometric means cf. equation 40 and 

41, respectively.

y  _ (K  M  (40)
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K K . )  - /(* W K (♦ J (41)

Jensen (1983) tested numerical solutions using both weighting methods and found that the 

geometric mean in general was superior to the arithmetic mean. Equation 41 will therefore 

be implemented in the simulation model.

Jensen (1983) found that an important criterion for achieving stability in the numerical 

solutions was how the time averaging was performed when calculating K(t|ri+W) and C(i|r,+''4). 

He found that the following procedure had a stabilizing effect without introducing problems 

with convergence.

c  (*;♦*) = 0.5 c  ( r ;  (A*)) + 1  £  c  (*;*’ (m))
(42)

k te* M + i  t  K te« (»»)) (43)

where M is the number of iterations within the current time step.

The iterative procedure involved for calculation of is terminated when the following 

convergence criteria are fulfilled for all j (Hansen et al., 1990),

nr;-' (M) - nr1 (M-1)
r ;  (M -1)

<  6 .
(44)

or

(AO - (M-l)| < 62 (45)

where t|ri+l (M) represents the solution to the iterative step M. The time step is decreased by 

a factor two between the iterative steps. If convergence is not achieved at a certain number 

of iterations, the calculations continue without convergence. The iteration procedure is 

initialized by assuming ijf]+l (0) = i|rj.
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Substitution of the approximations (42) and (43) into equation 26 and applying this equation 

at all node points in the depth-time domain, a solution can be found by solving the following 

matrix equation for known boundary and initial conditions,

L - 1 = f  (46)

which describes a system of N linear equations with N unknowns represented by the vector 

ifc the vector r and tri-diagonal matrix L, cf. Figure 6.

<̂N-1
b„ 1C1

Figure 6. Illustration of the matrix equation 46.

A simular matrix equation can be formulated to solve (31).

M  ■ ip = R (47)

The equations at the first and last node points j = l and j= N , respectively, depend on the 

boundary conditions. If the boundary is known as a specified potential, no equation has to be 

solved at this node and the total number of equations to be solved is reduced by one. If the 

boundary is known as a flux, the equation to be solved can be deduced by involving an 

imaginary node point outside the depth-time domain, cf. Figure 7.

The known fluxes at the upper and lower boundary qj ĵ and qj^*, respectively can be 

approximated by

i -  -  X  * « ( * ; . : )  ( 4 8 )

* K  ( ♦ - )  ( 4 9 )

Solving for TjC'in (48) and in (49) gives

A z
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♦o

---4

f 2

a.

Az Az
—  upper boundary ---
Az Az

lower boundary —  

Az Az

b .

♦m-i

♦n

Figure 7. a. Imaginary node point i|r0 at the upper boundary, b. Imaginary node point i(rN+1 at 
the lower boundary.

+ (50)

tfrM = ürM -Y AM T N
(51)

Substitution of (50) into equation 26 for the note j = 1 leads after rearrangement to the first 

equation in the matrix equation 46 which is valid for the "fully" implicit method.

where

b i|iM + d ilr'*1 = rI * 1 1 *2 I (52)

(53)

d, = K  M
(Az)2

(54)
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_ £ k l, „ K M  -K (♦::)
A t M 1 A z

K (<j
(A z)2

k :  -g(*d]Az 
K ( K l)

(55)

simplified to

A fw 1 A z

Substitution of (51) into equation 26 for the node j= N , leads after rearrangement to the last 

equation in the matrix equation 46.

a ilr'*1 + b tir'*‘ = r (57)“ W ^  y-1 " n  V  N  N

where

a = _ K  (* C ) (58)
(A z)2

b m C M  + (59)
* A t M (A z)2

A /M "  A z

_  4 c )  [ c
<iz)’

simplified to
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(61)

For obtaining the first and last equation in the matrix equation 47 valid for the Crank-Nicolson 

method, a simular procedure should be used. Here the known fluxes at the boundaries should 

be expressed at time ti+l and t1 (cf. equations 20-23) and solved for ijrj, and i|rj,+l, and i|rj<+l and 

respectively. Substitution of these expressions into equation 31 forj = l and j= N  would 

after rearrangement lead to the equations needed.

These derivations are not shown because only the "fully" implicit method will be implemented 

in the simulation model. The "fully" implicit method was also used by Jensen (1983) who 

found that less iterations were needed with this method compared to the Crank-Nicolson 

method.

In this study the upper boundary flux is equal to the actual evaporation, cf. Section 3.2. 

equations 6, 9 and 10. Then in equation 56

The lower boundary flux is set to zero or to gravity flow, cf. Section 3.2, equations 7 and 8. 

Then in equation 61

E M E ws 0 (62)P P

min[|<?.M1,2?M] £ w> 0

where qi+l is approximated by

(63)

o "1 = 0*N*'A (64)

or

(65)

The parameter q^1 is approximated in accordance with Hansen et al. (1990),
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(66)
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4. Simulations
The "fully" implicit numerical model described in Section 3.3 has been programmed in Turbo 

Pascal. Simulations of water flow and actual evaporation can then be performed for defined 

systems of interest.

In this study simulations are performed for a silt loam soil which is assumed homogeneous 

and characterized by the following parameters:

K, =  1.2 cm hour'1 

0O — 0.061 cm3 cm'3 

8, = 0.48 cm3 cm'3 

0, = 0.061 cm3 cm 3 

a =  2.452-10'2 cm'1 

n =  1.568

m = i - n-' = 3.622-10-'

The van Genuchten parameters are calculated from tabulated retention data listed by Hanks 

(1991).

The soil is initially assumed at field capacity equivalent to a water content of 30 vol %. The 

only driving input variable is (cm day ') which is assumed constant.

4.1. Duration of micro-lysimeters
To describe and evaluate the duration of a micro-lysimeter simulations are performed for two 

different systems.

Actual evaporation is calculated from a 100 cm soil profile. In this system, free drainage is 

assumed from the profile and approximated by gravity flow, cf. Section 3.2.

28



In the other system, actual evaporation is calculated from a 15 cm long micro-lysimeter. At 

the bottom no water exchange is possible because of the stopper. This is introduced in the 

simulation as a zero-flux boundary.

The geometry of the systems is shown in Figure 8.

t
Actual evaporation 

t
soil surface

15 cm
soil
profile zero flux

100 cm
free drainage

Figure 8. Outline of the geometry of the two simulated systems.

Conservation of mass in the simulations was achieved reasonable well on daily basis (cf. 

Figure 9 and 12) with Az = 1 cm, ö2 = 0.01 cm and an allowable number of iterations equal 

to 12 within every hourly output step. This implies an initial time step of 1 hour decreasing 

to a minimum of 0.9 sec. The accumulated mass balance error to time t Err1 (cf. Figures 9b 

and 12b) was calculated from equation 67.

In figures 9-11 and 12-14 outputs from the simulations are shown for the 1 m soil profile and 

the micro-lysimeter, respectively, when E^ was set to 0.5 cm day'1.

Total evaporation after 10 days was 24 mm and 20 mm for the soil profile and the micro- 

lysimeter, respectively, cf. Figure 9c and Figure 12c.

(67)
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Figure 9. Simulations for the 1 m soil profile with = 0.5 cm day'1, a. Accumulated water 
loss from the soil profile was calculated from integrated soil water profiles or from the sum 
of the upper and lower actual fluxes, b. Accumulated mass balance error, c. Accumulated 
actual evaporation.
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Figure 10. Simulated soil-water contents for the soil profile at different depths. =  0.5 cm 
day'1.
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Figure 11. Simulated soil-water profiles for the soil profile at different times. = 0.5 cm 
day1.
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Figure 12. Simulations for the micro-lysimeter with = 0.5 cm day'1, a. Accumulated water 
loss from the soil profile was calculated from integrated soil water profiles or from the sum 
of the upper and lower actual fluxes, b. Accumulated mass balance error, c. Accumulated 
actual evaporation.
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Figure 13. Simulated soil-water contents for the micro-lysimeter at different depths. = 0.5 
cm day'1.
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Figure 14. Simulated soil-water profiles for the micro-lysimeter at different times. = 0.5 
cm day1.

In Figure 15 is shown, at high evaporative demand the hourly difference (15a) and the 

accumulated difference (15b) between simulated actual evaporation from the soil profile and 

the micro-lysimeter. From Figure 15b it is seen that the duration for the micro-lysimeter is 

around 3 days.
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Figure 15. a. Calculated difference between actual evaporation from the soil profile Ea_s and 
the micro-lysimeter Ea_m. b. Accumulated difference. = 0.5 cm day'1.

In Figure 16 is shown at low evaporative demand the hourly difference (16a) and the 

accumulated difference (16b) between actual evaporation from the soil profile and the micro- 

lysimeter. From Figure 16b it is seen that the duration for the micro-lysimeter is around 6 

days.
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Figure 16. a. Calculated difference between actual evaporation from the soil profile Ea_s and 
the micro-lysimeter Ea_m. b. Accumulated difference. = 0.2 cm day'.
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5. Discussion
From the simulations it was found that the duration of a micro-lysimeter depends on the 

evaporative demand. When the soil was initially wet the duration was found to be around 3 

days under an evaporative demand of 5 mm day' and 6 days under an evaporative demand 

of 2 mm day'1. These findings illustrate the usefulness of model simulations, allowing for 

quick and low cost answers to questions on evaporation from micro-lysimeters — but 

precaution must be taken if the results are applied in reality. This is because a model is a 

picture of the reality and in particular because this model has not been validated against 

measured data on bare soil evaporation. As mentioned, only few processes are included in the 

model — conditions which possibly could introduce a certain bias in the calculations.

The empirical elements in the model describing the conditions at the upper boundary (cf. 

Section 3.2) probably introduce some errors in the calculation of actual evaporation. 

Calculation of hourly potential evaporation from equation 10 leads to negative values (i.e. 

dewfall) at nighttime, which is unrealistic under some climatic conditions. This causes, in the 

model, an infiltration of water into the soil at nighttime, which increases the duration of the 

micro-lysimeter.

To assess a more accurate and reliable estimation of the duration of a micro-lysimeter the 

model has to be applied using measured input variables and the calculated output has to be 

validated against field measurements.

The results are, however, comparable to measurements of Sadras et al. (1991), who found a 

lower evaporation from micro-lysimeters compared to the surrounding soil when the micro- 

lysimeters were removed for weighing after a week. Shawcroft and Gardner (1983) found 

similar cumulative water loss from micro-lysimeters and the surrounding soil within 5 and 12 

days in a field experiment in 1975 and 1976, respectively. They argued these findings to be 

caused possibly by several compensating errors due to unknown drainage, upward flow and 

plant water uptake in the surrounding soil and the restricted flow in the micro-lysimeters.
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A. List of used symbols
a Soil specific constant, cm'1
C(ijr) Specific water capacity, cm'1
6, Convergence limit
52 Convergence limit, cm
E, Actual evaporation, cm3 cm'2 hour'1
E!,+' Actual evaporation at time ti+l, cm3 cm'2 hour'1
Ep Potential evaporation, cm hour'1
Ej,+I Potential evaporation at time ti+l, cm hour'1
Fv Potential evaporation, cm day'1
Err' Accumulated mass balance error to time t, mm
G Soil heat flux density, Wm'2
H Sensible heat flux density, Wm'2
h Water tension, cm
K, Saturated hydraulic conductivity, cm3 cm'2 hour'1
K(i|r) Unsaturated hydraulic conductivity, cm3 cm'2 hour'1 
A.E Latent heat flux density, Wm'2
M Iterations within a time step
m,n Soil specific constants
q Water flux density, cm3 cm'2 hour'1
qj±Vi Water flux density at time t1 and depth zj±vl, cm3 cm'2 hour'1
qE Gravity flux density, cm3 cm'2 hour'1
q̂ +1 Gravity flux density at time tm, cm3 cm'2 hour'1
q, Maximum flux density, cm3 cm'2 hour'1
i|r Matric potential, cm
>|rj Matric potential at time t1 and depth zjt cm
Rn Net radiation, Wm'2
t Time, hour
t1 i'th time, hour
At1 i'th time step, hour
9 Water content, cm3 cm'3
0- Water content at time t: and depth zj( cm3 cm'3
0O Water content at the soil surface, cm3 cm'3
03,0, Saturated and residual water content, cm3 cm'3
z Soil depth, cm
Zj j'th  soil depth, cm
Az Soil layer, cm
AZj j'th  soil layer, cm
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