
Landbrugsministeriet

Statens Planteavlsforsøg (SE)

Agricultural applications of knowledge based
systems concepts

-exemplified by a prototype on weed control in organic
farming WEEDOF

Ph.D. dissertation

Ulla Dindorp
The Danish Institute of Plant and Soil Science
Department of Biometry and informatics
DK-2800 Lyngby

Tidsskrift for Planteavls Specialserie

Beretning nr. S 2201 -1992

Agricultural applications of knowledge based systems
concepts exemplified by a prototype on weed control in

organic farming WEEDOF

Ph.D. dissertation

Ulla Dindorp
The Royal Veterinary and Agricultural University

Department o f Mathematics and Physics
Copenhagen

The Danish Institute o f Plant and Soil Science
Department o f Biometry and Informatics

1992

Preface
This thesis describes the work done in a Ph.D.
project funded by the Danish Research Acad­
emy and the project Decentral Database Sys­
tems funded by The Research secretariate,
Ministry of Agriculture. The Ph.D. study was
mainly carried out at Department of Biometry
and Informatics, The Danish Institute of Plant
and Soil Science, and was advised from the
Department of Mathematics and Physics at The
royal Veterinary and Agricultural University.
The subject of the Ph.D. study is use of expert
systems as a tool for research and knowledge
transfer in plant production. Some preliminary
results of this work has been published in
references Dindorp 1990a, Dindorp 1990b,
Dindorp 1991a, Dindorp 1991b. This text aims
at providing an introduction to the concepts
and methods of the special field of AI - expert
systems - as well as describing the work in the
Ph.D. project in an accessible way to
researchers in agriculture.
Chapter 2 contains an introduction to expert
systems, especially to rule-based expert sys­
tems. It introduces the main concepts of the
field, and describes the function of expert
systems, the architecture, the technique used in
them and the methods used to build these
systems. The first 3 sections is an overall
description of rule based systems. Section 4, 5,
6 and 7 goes deeper into the parts of the rule
based system. Section 8 is a survey over
existing applications in agriculture.
Chapter 3 describes the development of a
prototype expert system, WEEDOF, con­
structed during the Ph.D. project. This is a
planning system designed to help organic
farmers control weeds. The knowledge collec­
tion for the system as well as the resulting
system design is described. The first issue is a
description of the expert system shell used for

the system development - EGERIA. The next
sections describes the knowledge acquisition
procedures used and the result of these, and
the design of WEEDOF. At last the missing
parts and how to possibly complete the system
is described.
As a consequence of the bad explanatory
power in WEEDOF the work continued with
specifying a model for inclusion in a model
based expert system. Chapter 4 deals with the
work done on a dynamic model for plant
growth. The model has been specified in a way
not usually used in model building in agricul­
ture. The specification method is shortly
described, as is the preliminary results. Due to
the lack of time the model is only in the pre­
liminary stages.
Chapter 5 is a final conclusion on the varied
work done in the project.
There are two important parts of research in
the project. One is in the use of a rather for­
mal method of knowledge acquisition - litera­
ture analysis - for aiding the initial knowledge
collecting for the system. This is described in
chapter 3. The other is the formal method used
for specifying the dynamic model for plant
growth. This method stems from computer
system design (the Vienna Development
Method) and has not been used before as a
method for developing models. It is an exciting
way of working with models and has so far
been very suitable for the job.
Many people and institutes have contributed to
the successful accomplishment of this project
and I would like to thank them all. The
advisors were Mogens Flensted-Jensen, at the
Department of Mathematics and Physics, The
Royal Veterinary and Agricultural University
who provided support and advice on general

matters, Tom Østerby from The Department of
Computer Science, Technical University of
Denmark who has been a dedicated and
involved technical advisor, and Ove J. Hansen
from Department of Biometry and Biometry
and Informatics, the local advisor, who first
got the idea of an expert system project and
helped in all the original descriptions of the
project. Kristian Kristensen, head of Depart­
ment of Biometry and Informatics, The Danish
Institute of Plant and Soil Sciences, provided
help and advice during the project time from
the time when the idea of the project emerged.
Henrik Schlichtkrull, Department of Mathemat­
ics and Physics, The Royal Veterinary and
Agricultural University served as a mathe­
matics instructor in the project start. And
Jesper Rasmussen and Bo Melander at Depart­
ment of Weed Control, Flakkebjerg, The
Danish Institute of Plant and Soil Science
provided their time in the construction of
WEEDOF.

Contents

1 Résumé (in Danish) ..1
1.1 Prototype ...1
1.2 Model ..2
1.3 Ekspertsystemer og jordbrug .. 3

2 Expert systems ..5
2.1 Background .. 5
2.2 General classifications of expert systems ..7
2.3 Architechure of rule based expert systems .. 9

2.3.1 Knowledge b a se .. 9
2.3.2 Inference engine ..9
2.3.3 User in terface .. 10

2.4 Knowledge representation .. 10
2.4.1 L o g ic ... 11
2.4.2 Rules and f a c t s ... 11
2.4.3 Semantic netw ork... 12
2.4.4 F ra m e s .. 12
2.4.2 Object oriented representation.. 12

2.5 Inference p rinc ip les .. 13
2.5.1 Modus ponens.. 13
2.5.2 R eso lu tion .. 13
2.5.3 Reasoning with uncertainty... 14

2.6 Inference control ... 15
2.6.1 Backward and forward ch a in ing ... 15
2.6.2 Search .. 15
2.6.3 Monotonie - non monotonic reason ing ... 16

2.7 Construction of expert sy s te m s.. 16
2.7.1 Knowledge acquisition.. 18
2.7.2 Knowledge e lic ita tio n .. 18
2.7.3 T o o l s 21

2.8 Agricultural applications of knowledge based c o n c ... 21
2.8.1 Interpretation .. 22
2.8.2 Prediction .. 22
2.8.3 Diagnosis... 23
2.8.4 P la n n in g ... 24
2.8.5 M onitoring.. 25
2.8.6 C o n tro l.. 25
2.8.7 D iscussion .. 25
2.8.8 Future use of KBS in agriculture .. 26

3 WEEDOF, a prototype of an expert sy s tem .. 28
3.1 Choice of d o m a in .. 28

Hi

3.2 Choice of tool .. 29
3.3 The expert system shell, E G E R IA .. 29

3.3.1 Knowledge representation.. 30
3.3.2 C o n tro l... 31
3.3.3 Reasoning .. 31
3.3.4 User In terface.. 32
3.3.5 Programming environm ent... 33
3.3.6 Hardware requirem ents... 34
3.3.7 Sum m ary... 34

3.4 The prototype, knowledge acquisition .. 34
3.4.1 Literature a n a ly s is .. 35
3.4.2 Knowledge elicitation .. 37

3.5 The prototype, im plem entation.. 43
3.5.1 Representation.. 44
3.5.2 Inference and control .. 46
3.5.3 Explanations... 47

3.6 From prototype to final sy s te m .. 47
3.7 Summary and conclusion... 48

4 A model based sy s te m ... 51
4.1 Plant population models ... 52
4.2 Specification language .. 53
4.3 Model structure ... 53
4.4 Functions in model ... 54
4.5 The model as part of a model based system ... 62
4.6 Summary and conclusion... 63

5 Summary and conclusion ... 65
5.1 Prototype ... 65
5.2 Model .. 66
5.3 Expert systems and ag ricu ltu re ... 67

6 References ... 69
Appendices

A l. Part of literature from analysis... 73
A2. Notes from literature analysis.. 75
A3. Concept hierarchy.. 77
A4. Calculations of reductions in y ie ld .. 79
A5. Model specification in META IV .. 81
B l. G lossary... 96

1 Resumé
Arbejdet i dette Ph.D. projekt har fokuseret på
to emner: Dels konstruktionen af en prototype
på et ekspertsystem for planlægning af
ukrudtsbekæmpelse i økologisk jordbrug. Dels
på specifikation af en dynamisk model for
plantevækst til brug i et model baseret
ekspertsystem.

1.1 Prototype
Den normale konstruktionsmetode ved
konstruktion af regelbaserede ekspertsystemer
er en iterativ procedure hvor især faserne
begrebsopstilling, formalisering og implemen­
tering gennemføres igen og igen. Der er ingen
formel konstruktionsmetode til konstruktion af
ekspertsystemer, men en del beskrivelser af
metoder til vidensudtrækning (knowledge
elicitation) og videnrepræsentation. Der forskes
for tiden en del i vidensanalysemetoder og
metoder til karakterisering af domænet til brug
i den første analyse af domæne og viden
(Nwana et al 1991). Indtil videre må hver
enkelt systemudvikler finde sin egen metode til
effektiv konstruktion af disse systemer.
I dette eksperiment var vidensingeniøren ny i
vidensingeniørfaget, og den første prototype
tog formentlig længere tid at konstruere end
del ville have taget for en erfaren vidensingeni­
ør, men udviklingen blev lettet ved brugen af
en ny metode i starten af vidensindsamlings­
fasen - litteraturanalyse. Ved denne analyseres
tekster fra domænet for at finde og udtrække
de vigtige begreber i domænet, og regler
vedrørende begreberne så som definitioner og
årsagssammenhænge. En parallel metode er
blevet brugt til automatisk konstruktion af små
vidensbaser (Gomez & Segami 1990).
Litteratur analysen tog netto omkring 2-3
måneder. Resultatet af analysen var et begrebs­

hierarki, en samling regler om begreberne samt
også noget mere udefinerligt - en fornemmelse
af domænet, og af at kende de vigtige begreber
og relationer. Når først begreberne er skrevet
ned er det ofte indlysende at de hører med, og
mange af dem ville være blevet nævnt i et
interview med eksperten. I dette tilfælde ville
en af eksperterne sikkert have kunnet udarbej­
de begrebshierarkiet, og brug af metoder som
for eksempel repertory grid eller skalerings-
teknikker kunne have været brugt til at afsløre
relationer mellem begreber. Styrken i litteratur
analysen er, at det er en simpel halv-formel
metode, som sikrer, at alle relevante begreber
- i hvert fald de begreber, som betragtes som
relevante i faglitteratur - medtages sammen
med de vigtige relationer mellem dem.
Til resten af videnindsamlingen blev brugt
interviews. På grund af den udførte litteratura­
nalyse, som havde leveret en grundoversigt
over domænet, var det muligt at strukturere
interviewene fra begyndelsen. Alt i alt blev der
gennemført seks interviews, resten af videnind­
samlingen blev gennemført ved hjælp af brev­
veksling og telefonsamtaler.
Det valgte domæne - ukrudtsbekæmpelse i
økologisk jordbrug - var karakteristisk ved en
mængde usikker og manglende viden. Siden de
kemiske ukrudtsbekæmpelsesmidler blev op­
daget har forskning i emnet været stoppet, og
er først for nylig blevet genoptaget. Domænet
er biologisk og en masse faktorer påvirker
vækst og udvikling af planter. Forskerne i
domænet var fra starten meget usikre på mulig­
hederne for at udvikle ekspertsystemer i deres
emneområde. Testen lykkedes imidlertid.
Eksperterne var tilfredse med den udviklede
prototype, og følte også, at de havde udviklet
ny indsigt i deres forskningsområde under
processen med at udvikle ekspertsystemet.
Domænet studeres så grundigt under system-

1

konstruktionen, at eksperterne finder huller i
deres viden om domænet, huller, som resul­
terer i nye eksperimenter for at klarlægge de
svage punkter. Foruden resultatet af et eks-
pertsystemprojekt i form af et system, giver
udviklingsprocessen altså også en bonus til de
medvirkende eksperter i form af en bedre
oversigt over den nuværende såvel som den
manglende viden indenfor domænet.
Det resulterende system - WEEDOF - blev
programmeret i EGERI A, en ekspertsystem-
skal. En af de vigtige ting, der mangler i det
nuværende system er forklaringer. Hoved­
årsagen til de manglende forklaringer ligger i
en kombination af skal og system. EGERIA
understøtter kun forklaringer der kan ge­
nereres, som en udskrivning af regler brugt
under en baglæns kædning. Da det nuværende
system bruger forlæns kædning skiftende med
baglæns, forhindrer dette forklaringsmekanis-
men i at fungere tilfredsstillende. Selv hvis
forklaringer kunne genereres fra viden i den
nuværende videnbase, ville disse forklaringer
være mindre gennemskuelige end forklaringer
fra en ekspert. Eksperten ville indbygge sin
model af domænet i forklaringerne, mens
systemet kun kan genspille viden i videnbasen,
viden som hovedsagelig er heuristisk. Dette er
en af grundene til at arbejdet fortsatte med
specifikationen af en model.

1.2 Model
En anden grund til at arbejde med en model
er, at det muliggør konstruktion af et system
med en videnbase, som kan genbruges i højere
grad end den heuristiske videnbase. En gene
ved disse modelbaserede systemer er at de er
langsommere.
Modeller kan bruges forskelligt i modelbasere­
de ekspertsystemer. Ekspertsystemdelen kan
for eksempel være en del, der kun bruges til at
indsamle information til simulation ved hjælp

af modellen og fortolker output fra modellen -
dvs den fungerer som omgivelser til modellen
og kan ikke bruge modellen til at svare på
vilkårlige spørgsmål. Modellen kan være en
integreret del af systemet, som for eksempel
også kan indeholde databaser. Endelig kan
systemet indeholde flere modeller, for eksem­
pel modeller i flere forfiningsgrader til for­
klaring på forskellige niveauer.
I dette arbejde var meningen, at modellen
skulle være en integreret del af et system, hvor
ekspertsystem delen ikke kun samler input for
modellen og fortolker output, men også ud­
fører et (heuristisk) arbejde med at finde de
relevante eller mulige bekæmpelsesmetoder før
simuleringen.
Arbejdet på modellen er startet, men det mo­
delbaserede system er kun i et forstadie. Den
brugte metode til specifikation af modellen er
ny i jordbrugssammenhænge. At specificere
systemer ved hjælp af funktionel nedbrydning
er velkendt indenfor edb, hvor det bruges i en
systemudviklingsmetode - The Vienna Deve­
lopment Method - VDM (Bjørner & Jones
1982). Modellen er specificeret i META IV,
og metoden har vist sig at være brugbar også
i denne type af systembeskrivelse. Top-down
specifikations metoden indebærer at nedbryde
problemer, og på den måde opdele dem i
mindre, simplere problemer før det er nødven­
digt at løse dem.
Modellen, som er blevet specificeret, eller
delvis specificeret, er en dynamisk model for
den totale plantevækst på en mark. Det er
meningen at modellen skal gøre rede for virk­
ninger af bekæmpelsesmetoder, f.eks. harv­
ning, og andre aktioner på væksten. Modellen
skal medtage konkurrence mellem arfer. Des­
uden skal modellen være generel, så det er
muligt at beskrive væksten af alle planter på
marken. Spørgsmålet er, om det er muligt at
konstruere sådan en generel model med den
eksisterende biologiske viden.

2

Den specificerede model grundes på en generel
livscyklus for planter. Der er et generelt møn­
ster for planteliv, hvor frø spirer til planter,
som vokser, blomstrer og dør. Modellen skal
være i stand til at modellere både arter, som er
enårige og flerårige, og frø- såvel som rodfor­
merede arter. I modellen er der to forskellige
bidrag til plantevæksten. Det ene er den natur­
lige plantevækst i følge arten og begrænset af
konkurrence - andre begrænsninger for ek­
sempel næringsmæssige eller klimatiske er ikke
omhandlet endnu. Livscyklen er her brugt som
basis i nedbrydningen af modellen i funktioner.
Det andet bidrag er indflydelsen af behand­
linger udført på marken på planter og frø.
Specifikationen viser alle funktioner, som er
nødvendige til at beskrive dette med tilhørende
input og output. De konkrete algoritmer er
ikke specificeret endnu. Enhver model er en
simplifikation af den virkelige verden. Nogle
eller måske alle funktionerne i denne model
kunne muligvis beskrives bedre med en em­
pirisk model. Funktionerne i den benyttede
mekanistiske model er opdelt i dele på en
måde, som efterligner sammenhænge i naturen.
For at gøre det muligt at overskue modellen er
funktionerne ret simple. Dele mangler, enten
fordi de er udeladt med vilje - for eksempel
fordi de anses for ret betydningsløse - eller
fordi viden mangler. Grunden til at holde fast
i den mekanistiske model er muligheden for at
forklare og begrunde resultaterne af det færdi­
ge system på baggrund af den dybe viden i
domænet.

1.3 Ekspertsystemer og jordbrug
Kan vi bruge ekspertsystemteknologien inden­
for jordbrug? Der er klare emner indenfor
jordbrug, hvor teknologien kan være brugbar.
For eksempel:
• Overvågning af klima i væksthuse,
• planlægning af fordeling af naturgødning på

økologiske jordbrug
• diagnose af sygdomme.
Mere og mere viden kræves for at styre en
jordbrugsbedrift og opnå det nødvendige dæk­
ningsbidrag. Nu da pc’ere bliver mere og mere
almindelige, vil der være et marked for be­
slutningsstøttesystemer. Ikke nødvendigvis
ekspertsystemer men disse vil være en del af
de nye systemer.
Udviklingenindenforekspertsystemteknologien
går i retning af en integration af ekspertsy­
stemer med andre typer software. De originale
ekspertsystemer er enkeltstående systemer i et
snævert emneområde. Det bliver generelt anset
for en fordel at integrere ekspertsystememe
med databaser eller modeller og lade dem
arbejde sammen med andre typer software,
som brugeren har adgang til. På den måde
bliver ekspertsystemer en naturlig del af en
større ‘pakke’ og bruges mere.
Konstruktion af ekspertsystemer tager generelt
længere tid end konstruktion af andre edbpro-
grammer. Derfor er det vigtigt at være for­
sigtig med valg af domæne og vælge et, hvor
udviklingen kan begrundes. Dette kan være
enten på grund af økonomiske gevinster eller
mangel på eksperttid. I Australien, hvor af­
stande er store og eksperterne få har den sidste
grund været basis for udvikling af ekspertsy­
stemer (Waterhouse et al 1989). Hvis man ser
på betingelserne i Danmark, kan fortjenesten
på udvikling af systemer til jordbrugserhvervet
let blive for lille til at betale for udviklingen af
danske systemer. Nogle af disse systemer kan
så udvikles til det europæiske marked, eller de
nordeuropæiske lande i tilfælde, hvor betin­
gelserne er meget forskellige i Sydeuropa og
nordeuropa.
I fremtiden er der håb om, at udviklingsom­
kostningerne for ekspertsystemer vil blive
mindre. Nye vidensindsamlingsværktøjer duk­
ker op. Disse sigter på at lette videnindsam-

3

lingen ved for eksempel at give eksperten
redskaber til at indtaste hans viden. Desuden
udvikles nye metoder til formalisering af
konstruktionsprocessen - litteraturanalyse kan
være baggrund for en sådan mere formel
metode.
Jordbragsforskere ser ud til at have fordel i at
samarbejde i ekspertsystemprojekter. Dette
projekt har vist, at måden at arbejde med do­
mænet, når man udtrækker og formaliserer
viden, giver en feed-back til eksperten i form
af en øget indsigt i hvilken viden der er brug­
bar, og svagheder i viden indenfor domænet.
Arbejdet på et ekspertsystemprojekt vil ofte
betyde en formalisering af viden, som gør det
muligt at anvende viden også sammen med
mere traditionelle programsprog, hvilket kan
give mere effektive programmer.

4

2 Expert systems
This chapter will define the subject expert
systems and describe it in terms of back­
ground, function, technique and methods used.
Several books have been written on the sub­
ject. Some of the best known and often cited
are Rich 1983, Hayes-Roth et al 1983, Nilsson
1982, and Waterman 1986.
This definition stems from The British Com­
puter Society 'An expert system is regarded as
the embodiment within a computer o f a knowl­
edge-based component from an expert skill in
such a form that the system can offer intelligent
advice or take an intelligent decision about a
processing function. A desirable additional
characteristic, which many would consider

fundamental, is the capability o f the system, on
demand, to justify its own line o f reasoning in
a manner directly intelligible to the enquirer.
The style adopted to attain these characteristics
is rule-based programming. ’
Many other definitions have been made. A
common point in these is the built in intelligent
component, the intelligent behaviour of the
system and the ability to answer questions.
Other definitions do not narrow the definition
to rule-based systems. Although they have
been far the commonest developments have
introduced systems that use semantic net repre­
sentations, fuzzy systems and others. Expert
systems often comprise several forms of pro­
gramming, and may contain ordinary program
parts as for instance models and databases.
Often the architecture of the systems is also an
important part of the definition, including only
systems where the systems knowledge is separ­
ated from the control structure.
Occasionally questions are raised whether
particular systems are ‘real expert systems’ or
just decision tables. In response different labels
(decision support system, knowledge system)

are sometimes used to more explicitly define a
software system. The techniques used are the
same, but the knowledge may be of different
levels. Maybe it is not at expert level but aim
at a less ambitious support of the knowledge
solving process. The goal is always to deliver
the most skilful decision making systems.
Sometimes rule based expert systems are the
best tool for the job, sometimes other
approaches are better.
In the rest of this thesis - except in chapter 4 -
the rule based expert system will be concen­
trated on, and it refers to this when the terms
expert system and knowledge based system are
used. The issue in chapter 4 is a model for a
model based system.
The first section of this chapter addresses the
background of expert systems. Section 2.2
deals with two ways of classifying expert
systems. Section 2.3 describes the architecture
of expert system with the segregation into the
knowledge base, inference engine and user
interface. User interface is an important part of
a computer system but has not been elaborated
in this project and will not be discussed very
much. Section 2.4, 2.5 and 2.6 are further
elaborations on the knowledge base and infer­
ence engine with descriptions of techniques
used. Section 2.7 describes methods and tech­
niques for construction of expert systems. And
section 2.8 gives a survey of known expert
systems in agriculture.

2.1 Background
The phase of computer evolution that spawned
expert systems started in the early seventies, it
was a breakthrough in a field of computer
science known as artificial intelligence - AI.

5

The goals of AI scientists have always been to
develop computer programs that could in some
sense think - reason using knowledge, that is,
solve problems in a way that could be con­
sidered intelligent if carried out by a human
being.
AI can be subdivided into relatively indepen­
dent research areas. One group of AI-
researchers is concerned primarily with prob­
lem solving, and it is in that area expert sys­
tems are placed. Another group of AI scientists
is concerned with developing computer pro­
grams that can read, speak or understand
language, commonly referred to as natural
language processing. A third branch of AI
research is concerned with developing robots.
Especially visual and tactile programs that will
allow robots to observe changes in an envi­
ronment. And a fourth branch is developing
programs which can expand on their own
knowledge by learning.
In the sixties AI scientists tried to simulate the
complicated methods of thinking by general
methods for solving broad classes of problems;
they used these methods in general purpose
programs that could solve not only one but
series of logical problems. However develop­
ing general purpose programs was ultimately
fruitless. The strength of the general problem
solvers was their generality, on the other hand
they could only solve problems of limited
complexity, so the more classes of problems a
program could handle, the more poorly it
seemed to do on any individual problem. The
work on general problem solvers was therefore
overshadowed by the new field - expert sys­
tems.
The expert system concept departs from the
general problem solver concept by giving up
the ambition on generality. The AI scientists
realized that the problem solving power of a

program comes from the knowledge it pos­
sesses, and to make a program intelligent, it
must be provided with lots of knowledge from
the actual problem domain (Hayes-Roth 1983,
Waterman 1986). This was a breakthrough in
the field and led to the development of special
purpose programs, systems that were experts
in some narrow problem area.
In the beginning there was great optimism
about the potential power of these new com­
puter programs. A general attitude among
american AI scientists was that natural and
artificial intelligence were two sides of the
same question, and that eventually programs
would be made that would make machines as
intelligent as human beings (Waterman 1986).
In the seventies and eighties it has become
clear that such prophesies will not be realized
for a long time - if ever (Harder 1990). The
AI scientists have been criticised for overesti­
mating the possibilities of AI, one o f the early
criticists says ‘In each area where there are
experts with years o f experience the computer
can do better than the beginner and can even
exhibit useful competence but it cannot rival
the very experts... ’ (Dreyfus & Dreyfus 1986).
The critics try to establish and describe funda­
mental constraints in computer technology,
which makes it impossible to believe that all
mental processes can be imitated.
Buchanan and Smith (1989) rejects this critic.
They say ‘The term ‘expert system ’ suggests a
program that models a human expert ’s thought
processes... However the designers o f expert
systems do not subscribe to these implications.
Although high performance is a goal, a system
need not equal the best performance o f the best
individuals to be useful... designers o f expert
systems build into their programs much o f the
knowledge that human experts have about
problem solving. But they do not commit to

6

2 Expert systems
building psychological models o f how the
expert thinks. The expert may describe how he
or she would like others to solve these prob­
lems. The expert system is a model o f some­
thing, but it is more a model o f the experts
model o f the domain than o f the expert. ’
The discussions have not stopped the develop­
ment of expert systems. The evolution has
made the technology available for those other
than researchers, and it is now being used in
private companies for developing applications.
The technology developed by the AI
researchers has shown to be useful for a var­
iety of tasks although there has been a lower­
ing of the expectations to the intelligence that
is possible to build into a computer.

2.2 General classifications of expert
systems
There are several ways of classifying expert
systems. The classification could be made on
grounds of problem categories, on system
operations or on system types.
The classification according to problem cat­
egories has been used in classical expert sys­
tem literature (fig. 2.1). Interpretation systems
explains observed data by assigning to them
symbolic meanings describing the situation.
This category includes surveillance, image
analysis and signal interpreting. Prediction sys­
tems employ a model to infer consequences.
This category includes weather forecasting and
crop estimations. Diagnosis systems relate
observed irregularities with underlying causes.
This category includes diagnoses of diseases

Category Problem addressed
Interpretation
Prediction
Diagnosis
Design
Planning
Monitoring
Debugging
Repair
Instruction
Control

Inferring situation descriptions from sensor data
Inferring likely consequences of given situations
Inferring system malfunctions from observables
Configuring objects under constraints
Designing actions
Comparing observations to plan vulnerabilities
Prescribing remedies for malfunctions
Executing a plan to administer a prescribed remedy
Diagnosing, debugging and repairing student behavior
Interpreting, predicting, repairing and monitoring system behaviors

Figure 2.1 Generic categories o f knowledge engineering applications. From Hayes-Roth et al
1983.

among others. Design systems develop con­
figurations that satisfy the constraints of the
design problem. Such problems include build­
ing design and budgeting. Planning systems
employ models to infer effects of planned
actions. They include problems such as experi­
ment planning. Monitoring systems compares
observations of system behaviour to features
crucial to successful plan outcomes. They
could be monitoring the climate in a green­
house. Debugging systems prescribe remedies
for correcting a diagnosed problem. Such could
be debugging aids for computer programs.
Repair systems develop plans to administer a
remedy for a diagnosed problem. This could
be for instance repair of machines. Instruction
systems diagnose and debug student behav­
iours. They diagnose weaknesses in a student’s
knowledge and plan a tutorial to convey the
knowledge to the student. Control is also a
mixture of several of the above mentioned
types. Control systems interpret data, predict
the future, diagnose causes of anticipated prob­
lems, formulate a repair plan and monitor the
execution. Problems in this class include
business management and air traffic control.
Clancey (1985) suggests classification accord­
ing to system operations to improve upon the
distinctions made in the above generic cat­
egories. He revises the above table and clas­
sifies according to what we can do to or with
a system (fig 2.2). Operations are grouped in
terms of those that construct a system and
those that interpret a system corresponding to
synthesis and analysis.
Interpretation systems describe a system. Inter­
pretation systems perform identification, pre­
dictions or control. Diagnosis and monitoring
systems are both a kind of identifying system.
In monitoring systems behaviour are checked
against a preferred model. Diagnosis identifies

some faulty part of a design with respect to a
preferred model.
The Construction systems synthesises new sys­
tems. They perform specifications, design and
assembly.

Construct
(synthesis)

Specify Assemble
(constrain) Design (manufacture)

Configure Plan (structure) (process)

Interpret
(analysis)

Identify
(recognize) Predict

(simulate)
Control

Monitor Diagnose
(audit) (debug)

Figure 2.2 Generic operations fo r synthesi­
zing and analysing a system. Synonyms appe­
ar in parentheses. From Clancey 1985.

Instruction is dropped because it is a composite
operation.

8

2 Expert systems

2.3 Architecture of rule based expert
systems
Rule based expert systems have three compo­
nents: a knowledge base which contains the
domain knowledge, an inference engine which
decides how and when to use the knowledge,
and a user interface (fig 2.3). During execution
the system maintains a database which contains
the current state of the problem.

2.3.1 Knowledge base
The part of the system which contains the
domain knowledge on a symbolic form is
called the knowledge base.
An expert in a domain has knowledge of
several types. Part of the domain specific

knowledge is simple subject knowledge, which
can be found in a text book on the domain. But
the expert also has knowledge not usually
described in text books, this includes excep­
tions to general rules, how to solve problems
and information on earlier problems. This
latter type of knowledge is called heuristic
knowledge.
The knowledge base contains knowledge of
both kinds - the subject knowledge as well as
heuristic knowledge to the extent that it is
possible to transform this kind of knowledge
into a representable form to the knowledge
base.

2.3.2 Inference engine
Formalized expert knowledge is stored in the
knowledge base. The inference engine contains

engineer
Figure 2.3 Architecture o f rule based expert system.

9

the strategies to draw inferences and control
the reasoning process. Inference and control
strategies guide the expert system as it uses the
facts and rules stored in its knowledge base,
and the information it acquires from the user.
The inference engine performs two tasks. It
examines the rules and facts and adds new
facts when possible, and it decides the order in
which the inferences are made. In doing so the
inference engine conducts the consultation with
the user.

2.3.3 User interface
The last part of the expert system is the user
interface, the part of the system which con­
ducts the communication with the users. Here
we distinguish between the interface for con­
structors (knowledge engineers) and the consul­
tation interface.
The important techniques especially in the
consultation interface are techniques which
appeal to the users. First of all graphical
presentations and natural language. Natural
language is still far from reality to day. More
important is a natural dialogue with the user.
To ask questions and show explanations in a
language understandable to the user.
Explanations
An important side of expert systems is the
ability to explain the conclusions drawn from
knowledge and user answers.
Explanations in expert systems are usually
associated with some form of tracing of rules
that are used during the course of a problem
solving session. This type of explanation is not
always satisfactory. Heuristics may have been
used to make shortcuts. The reasoning can still
be sound. But an explanation based on the

heuristics does not explain the underlying
reason for events.
A satisfactory explanation of how a conclusion
was derived often demands an ability to con­
nect the inference steps with fundamental
domain principles as justification.

2.4 Knowledge representation
Expert system technology has been described
as a new programming paradigm especially due
to the use of declarative rather than procedural
programming. Procedural programming is the
usual programming paradigm in conventional
programs. Here you provide the algorithm for
solving the problem explicit in the program, as
a step by step specification, and the domain
specific knowledge is implicit in the algorithm.
In declarative programming the knowledge is
declared with no specific ordering, and the
algorithm to reach the result is implicit - build
into the systems way of treating the knowl­
edge.
The question is how much declarative pro­
gramming is really used. To describe knowl­
edge processing both types can be used, also
in shells, and the boundary between the two is
very flexible. Generally the less declarative
knowledge, the more procedural knowledge is
required and vice versa. Some believe that the
absence of an explicit algorithm in connection
with the interactive use makes it difficult to
foresee what will happen in such a program
(Harder 1990).
Knowledge representation means encoding of
justified true beliefs into suitable data struc­
tures. Expert systems and other AI systems
must have access to domain-specific knowledge
and must be able to use it to perform their task
- they require the capability to represent and

10

2 Expert systems
manipulate sets of statements. Most of the
representations used in AI derive from some
type of logic.

2.4.1 Logic
Every logical system uses a language to write
propositions or formulae. Statements and
arguments are translated to the language to see
more clearly the relationships between them.
This language consists of an alphabet of sym­
bols:
• Individual constants used to express specific

objects such as ‘Peter’.
• Variable symbols.
• Predicate names, usually relations (verbs) to

assemble constants and variables such as
‘send’ or ‘write’.

• Function names.
• Punctuation symbols.
• Connectives such as ‘and’, ‘or’, ‘imply’, to

produce compound statements from simple
statement.

• Quantifiers such as ‘for all’.
And some syntax rules. Normally, when one
writes a formula, one has some intended inter­
pretation of this formula in mind. For example
a formula may assert a property that must be
true in a database. This implies that a formula
has a well-defined meaning or semantics. In
logic , usually the meaning of a formula is
defined as its truth value. A formula can be
either true or false.
Logic consists of deduction. From a set of
formulas or propositions written according to
the unambiguous language, and their truth
values, new formulas may be deduced follow­
ing rules which are valid in the formal deduct­
ive system. In simple systems for instance the
only deduction rule could be modus ponens,
which says from A is true and A=>B, B is true
is a direct consequence, where A and B are
formulas in the language. By using modus

ponens again and again we have a simple pro­
cedure which enables us to construct a proof or
argument.
The popular logic programming language
PROLOG has a background in predicate calcu­
lus, which is a special form of logic. It uses
the deduction rule resolution (described later)
for deduction of new knowledge.

2.4.2 Rules and facts
The traditional form of representing the knowl­
edge is in terms of facts and rules, ie classifi­
cation of and relationships between objects,
and rules for manipulating objects, the control
part of the expert system then will have infor­
mation on when and how to apply the rules.
One way of representing the facts and rules is
through the use of a predicate calculus nota­
tion; here we define relationships between
objects by a relation name (a predicate) fol­
lowed by a list of the objects (terms) being
related in this way.
For example the fact ‘the weed Galium aparine
is present on the field’ could be represented as

weed_present(galium_aparine)
Rules can then be used to define relationships,
for instance a rule which warns that the pro­
portion of winter cereals is too high in the field
if Galium aparine is present, can be formulated
in this way:
suspect(too much wintercereals) IF

weed_present(galium_aparine)
Other rules can then advise what to do if too
high a proportion of winter cereals is suspec­
ted.

11

2

For very large knowledge bases the rules and
facts representation soon becomes confusing.
To add depth to the knowledge base there are
several ways of structuring the knowledge.

2.4.3 Semantic networks
The most general representational scheme is
called semantic network (Sowa 1984). A
semantic network is a collection of objects
called nodes. The nodes are connected by links
- called arcs in directed graphs. Ordinarily
both the arcs and the nodes are labelled. There
are no constraints on how they are labelled but
some typical conventions are:
1. Nodes are used to represent objects,
attributes and values.

(LlFELENGTFft
C SIZE)

(C R O P } (W EED }

Figure 2.4 Semantic net specifying some
relations about plants.

weed. That is mayflower is an instance of
the class weeds.
A second common relationship is the
attribute arc. Attribute arcs identify nodes
that are properties of other nodes for
instance an attribute arc could link weed
with competitive ability.
Other arcs capture causal relationships for
instance ‘harrowing causes plants to die’
(fig 2.4).

2.4.4 Frames
Frames provide another method for represent­
ing facts and relationships. A frame is a des­
cription of an object that contains slots for all
the information associated with the object such
as attributes. Slots may store values. Slots may

PLANT
slots entries

Species
Lifelength
Size
Dry matter minim.
Propagation

Forget-me-not
default: 1
10 cm
if needed look in table X
if needed look in table y under species

Figure 2.5 Frame fo r a plant including some
o f the attributes

2. Arcs (links) relate objects and attributes
with values. An arc may represent any
unary/binary relationship. Common arcs
include:
• Is-a arcs to represent class/instance and

class/superclass relationships. In the weeds
example we may say that mayflower is a

also contain default values, pointers to other
frames, sets of rules or procedures by which
values may be obtained. The inclusion of pro­
cedures in frames joins together in a single
representational unit the two ways to state and

12

2 Expert systems
store facts: procedural and declarative repre­
sentations (fig 2.5).

2.4.5 Object oriented representation
Representing knowledge with object-attribute-
value triplets is a special case of semantic
networks. In object oriented representation the
basic unit of description is an object. Objects
may be physical entities such as soil or plants,
or they may be conceptual entities such as
harrowing. Objects are characterized by
attributes or properties where values are
stored. Typical attributes for for instance
physical objects are size and colour.
Objects that share properties are organized in
classes. For instance chickweed common, for-
get-me-not and mayweed can be thought of as
objects assigned to the class weeds, called
instantiations of the class. A class can belong
to another class as weeds to plants (fig 2.6).
This whole concept gives rise to a hierarchical
representation of the world.

CLASS ----------------
PLANT attribute Species attributeLifelength attributeSize

-CLASS
WhH) at tribute CEvalueJ

0pec1es:nam e
Lifdengtfi:]
Sf

teleneto:
Size.futw

\CEvaJue:OJ

\SP *f wmterwheatI Species: name ^ Lifelengtb:Size:20cm \ ŶieM;7SJdcj>fa J

Figure 2.6 Object oriented representation o f
classification.

The class can store information relevant to all
its objects and the objects are created with this
information. Classes inherit information from
their superclasses. One obvious advantage of
classification is that it is an economical way of
representing data and knowledge in areas
where a hierarchical approach is used in prob­
lem solving.

2.5 Inference principles
Logical inference is the process of deriving a
sentence j from a set of sentences (rules) 5 by
applying one or more inference rules or deduc­
tion rules, usually with the purpose of showing
S implies s.
2.5.1 Modus ponens
The most common inference strategy used in
knowledge based systems is the application of
a inference rule called modus ponens. This
rule states that when A is known to be true and
a rule states ‘if A then B’, then it is valid to
conclude that B is true. Another way to say
this is that if the premises of a rule is true then
we are entitled to believe that the conclusions
are true.
Modus ponens is very simple and the reasoning
based on it is logically valid and easily under­
stood. When this rule is the only one used
certain implications which are logically valid
cannot be drawn. For example the rule called
modus tollens which says that if B is false and
there is a rule ‘if A then B’, then it is valid to
conclude A is false. This logical inference is
seldom used in most expert systems.

2.5.2 Resolution
Resolution is a very general, and easily imple­
mented inference rule used in logic program­
ming. The most popular logic programming

13

2 '

language PROLOG uses resolution. It works
on rules and facts brought on a special form
called clauses (Hamilton 1988). In this form
assertions are written as disjunctions of posi­
tive and negative literals. A literal being a
proposition or predicate, here shown in state­
ment calculus (1).

A V B V i C (0

A rule will then be on the form ‘^ A or B’
which is equivalent to ‘if A then B’ (this may
be seen from the truth tables). Every sentence
in first-order logic can be brought on this
form. The operation needed for resolution is
very simple. Resolution operates by taking two
clauses containing the same literal. The literal
must occur in positive form in one clause and
in negative form in the other. The two clauses
(above the line in the figure) can be resolved to
one (beneath the line) by removing the literal
in both clauses and combining the rest of the
two parent clauses (2).

A W -> B B M C (2)
A W C

If resolution on the clauses in a knowledge
base eventually reaches an empty clause, a
contradiction exists. If a contradiction exists it
will be found eventually, when resolving the
clauses in a knowledge base. The example
shown is for statement calculus, but for predi­
cate calculus the mechanism is similar except
that care has to be taken for quantifiers when
the rewriting to clauses takes place (Hamilton
1988).
In logic programming the problem amounts to
checking that a goal - for example a diagnosis

- is a logical consequence of the set o f facts
and rules in the knowledge base. It is imposs­
ible to check whether the rule is a logical
consequence, but it is possible to check
whether the negated goal is inconsistent with
the knowledge base. The goal is negated and
resolution is made on the set of facts, rules and
the goal. If the goal is a logical consequence of
the knowledge base the inconsistent ‘empty
clause’ will be deduced in a resolution with the
negated goal and the knowledge base.

2.5.3 Reasoning with uncertainty
Experts sometimes make judgments when not
all of the data are available or, some may be
suspect, and some of the knowledge for inter­
preting the knowledge may be unreliable.
These difficulties are normal situations in many
interpretation and diagnostic tasks. The prob­
lem of drawing inferences from uncertain or
incomplete data has given a variety of
approaches.
One of the earliest and simplest approaches
was used in one of the first expert systems,
MYCIN. It uses a model of approximate impli­
cation, using numbers called certainty factors
to indicate the strength of a rule. The certainty
factor lies between 1 and -1, where 1 means
definite certainty, -1 means definite not, and 0
means uncertain . Evidence confirming a rule
is collected separately from that which
disconfirms it, and the ‘truth’ of the hypothesis
at any time is the algebraic sum of the evi­
dence.
It is often questioned whether this solution to
the handling of uncertainty is unnecessarily ad
hoc. There are probabilistic methods, for
example Bayes’ theorem that could be used to
calculate the probability of an event in light of
a priori probabilities. The main difficulty with
Bayes’ theorem is the large amount of data and

14

2 Expert systems
computations needed to determine the condi­
tional probabilities used in the formula. The
amount of data is so unwieldy that indepen­
dence of observations is often assumed in order
to calculate the probabilities. Lately though
new methods have been found to use Bayes
theorem in connection with networks (Spiegel­
halter & Lauritzen 1990, Spiegelhalter &
Lauritzen 1988).
Another approach to inexact reasoning that
diverges from classical logic is fuzzy logic. In
fuzzy logic, a statement as for instance ‘X is a
large number’ is interpreted by a fuzzy set. A
fuzzy set is a set of intervals with possibility
values, such that the possibility of X being in
an interval is the corresponding possibility
value.

2.6 Inference control
A requirement for knowledge processing is a
control structure; this determines the way in
which the various rules are applied. Essentially
a control structure enables a decision to be
taken on what rule to apply next. In most real
situations the number of rules required will be
very large and many different forms of control
structure are possible. Rules could be taken in
sequence, or some subset of rules (metarules)
might be required to decide which other rules
to apply. The mechanism by which a rule is
chosen in situations in which there is a choice
is also a control structure problem.

2.6.1 Backward and forward chaining
Many existing expert systems use a backward
chaining strategy. In backward chaining the
inference engine starts with a conclusion of a
rule as a goal or hypothesis and works back­
ward taking the premises of the same rule as
new subgoals to be proved. If the possible

outcomes are known - for instance possible
diagnoses - and if they are reasonably small in
number, then backward chaining is very effi­
cient. Backward chaining systems are also
called goal-directed systems.
In the case of things to be assembled or
designed the possible outcomes can be astro­
nomic. In that case it is more efficient to
reason forward from the initial states, compare
data with premises of rules and add con­
clusions to the list of facts until a state that
matches the goal is reached. This type of
reasoning is called forward chaining.
Sometimes it is a good idea to attempt a sol­
ution searching bidirectionally (that is, both
forward and backward simultaneously). The
search then starts at both the goal state and the
initial state, and the control system then
decides at every stage whether to apply a
forward or a backward rule.

2.6.2 Search
Under the process of searching for a solution
to a problem, it has to be decided which rule
to apply next. Very often more than one rule
will have its left side (forward chaining) or
right side (backward chaining) match the
current state. It is clear that how such deci­
sions are made have influence on whether a
problem is solved and how quickly.
Many problem solving systems in AI are based
on a description of the problem-solving as a
search through a state space. The state space is
the set of problem states and the transitions
between problem states. Problem solving is
carried out by searching through the space for
a state equals a goal.
One class of methods to do this is blind search.
This type of search can be forward, backward,

or proceed both ways at the same time. Given
an orientation for the search, there are several
different systematic orders in which the nodes
of the search space may be considered. Depth-
first search is a process that considers success­
ive nodes in the space before considering
alternatives at the same level. It does not
return until a failure has been obtained. A
breadth-first search expands the search graph
differently and considers all nodes on one level
before proceeding to the next, and so descends
uniformly across all possibilities. In a complete
search depth-first and breadth-first approaches
examine the same number of nodes, however
breadth-first search needs more memory
because many paths are examined at the same
time.
Complete search will in principle always find
a solution to a problem if there is one. Blind
search methods are not practical for many
problems because the search spaces have too
many nodes. For each step more the number of
choices multiplies the total number of combina­
tions. This is called the combinatorial
explosion. For many applications it is possible
to include domain-specific information to guide
the search process and to reduce the search
space. This is called heuristic information, and
such search procedures are called heuristic
search methods. Some heuristic search methods
will guarantee to find the best answer, others
will only find a ‘good’ answer.
Several types of heuristic search algorithms
have been used for expert systems. One form
of heuristic search is to direct the search in a
best-first order. To determine which branch to
expand, a domain-dependent function is used to
estimate the closeness of the path to the goal.
This function is especially useful if it is mono­
tone, so the evaluation function decreases as a
goal is approached.

Another way to avoid the combinatorial
explosion is to simplify the problem. If it is
possible, it is often advantageous to decompose
the problem to several smaller ones, and try to
solve each of these.
Another way of simplifying the problem is by
making abstractions of the search space, and
tackle the problem using intermediate levels of
abstraction, thereby transforming the problem
into less complicated problems.

2.6.3 Monotonie - non monotonic reasoning
Another distinction among inference engines is
whether they support monotonic or nonmono­
tonic reasoning. In a monotonic reasoning
system, all values concluded for an attribute
remain true for the duration of the consultation
session. Facts that become true remain true,
and the amount of true information in the
system grows steadily or monotonically.
In a nonmonotonic system, facts that are true
may be retracted. Planning is a good example
of a problem type that demands nonmonotonic
reasoning. Early in the planning process it may
seem logical to go a certain way. Later, as
information comes in, an early decision may
turn out to be wrong, and need to be retracted.
Changing the value of a single attribute is not
difficult. But tracking down the implications
based on this fact may show up to be difficult.

2.7 Construction of expert systems
The construction of rule based systems is very
different from ordinary program construction.
In the last process knowledge of the domain is
better described and even sometimes formal­
ized, and the construction of systems proceeds
in a strictly sequential way through phases as

16

2 Expert systems
problem analysis, program specification,
planning, coding and testing.
Knowledge sources for an expert system can
be several kinds, knowledge may be acquisited
from books, examples or an expert. These
sources contribute with different kinds of
knowledge. From text books and such a kind
of knowledge called public knowledge can be
acquisited. This is the fundamental knowledge
of the domain and contains knowledge as
concepts, causal relations and definitions. The
expert also possesses this kind of knowledge,
but has additional knowledge such as rules of
thumb, how to solve problems efficiently, and
exceptions to rules. This kind of knowledge
(experience) is called private knowledge and is
crucial in the building of expert systems.
The expert, or domain expert, is a critical
factor in expert system construction. The
efficiency of the system relies on the incor­
poration of the experts knowledge on problem
solving strategies and experience. It is a well
known doctrine that experts are unable to build
expert systems unaccompanied. The require­
ments in the construction especially in the
formalization phase are normally far from the
requirements the expert will naturally see in
the domain. Therefore another person called
the knowledge engineer constructs the system
based on information from the expert and
sometimes other sources.
In the construction process the knowledge
engineer proceeds through several stages.
These stages can be characterized as problem
identification, conceptualization, formalization,
implementation and test as shown in fig. 2.7.
The knowledge engineering process can be
divided into three phases. The first phase is
characterized by domain identification. The
second is several iterations of knowledge
acquisition and knowledge-based development

Problem identification
I

Conceptualization

Formalization

Implementation

Test

Figure 2 .7 Construction model fo r rule
based expert systems

including conceptualization, formalization and
implementation and test. The final phase is the
installation, maintenance and use of the sys­
tem.
During identification, the knowledge engineer
and expert work together to identify the prob­
lem area and define its scope. They also define
the participants in the development process
(additional experts), resources needed and the
goal of building the expert systems.
During conceptualization, the expert and know­
ledge engineer explicate the key concepts,
relations and information flow characteristics
needed to describe the problem solving process
in the domain.
Formalization involves mapping the key con­
cepts and relations into a formal representation
suggested by some expert system building tool
or language.

17

During implementation, the knowledge engin­
eer combines and reorganizes the formalized
knowledge to make it compatible with the
information flow characteristics of the prob­
lem. The resulting set of rules and control
structure define a prototype program capable of
being executed and tested.
Finally testing involves evaluating the per­
formance of the prototype program and revis­
ing it to conform to standards defined by
experts in the domain.
This process is not as neatly and well under­
stood as it sounds. The stages are rough char­
acterizations of the activity and are neither
clearcut, well-defined or independent. The
stages are traversed several times and the
process will vary from one individual situation
to another. The construction process is not
understood well enough yet to outline a stan­
dard sequence of steps that will optimize the
expert system building process. Research is
going on to develop methods to improve the
first phase. There has been an increased aware­
ness that the quality of the knowledge acquisi­
tion phase can be raised by a better analysis
from the start (Woodward 1990, Nwana et al
1991).
2.7.1 Knowledge acquisition
Knowledge acquisition is the collecting and
formalizing of knowledge, prior to the imple­
menting in a knowledge based systems know­
ledge base.
In knowledge acquisition public and private
knowledge is segregated. Public knowledge is
the knowledge available in text books and
such. Private knowledge is attained through
experience and by working with experts.
The quality of first generation knowledge
based systems depends on the success of ex­

tracting and expressing the private knowledge
of one or more experts in a way usable to an
expert system. This part of the knowledge
acquisition process is called the knowledge
elicitation.
Knowledge elicitation establishes the base for
the expert systems function, ie the collection of
knowledge which shall exist in the knowledge
base of the expert system. Knowledge elicita­
tion is performed by the knowledge engineer in
cooperation with the domain expert.

2.7.2 Knowledge elicitation
Knowledge elicitation is a problem. It is diffi­
cult and time consuming. The quality of the
resulting system depends on completeness and
consistency of the enclosed knowledge. Other­
wise the function will be bad. The knowledge
elicitation must ensure collection of knowledge
of acceptable quality.
Some of the problems in knowledge elicitation
are:
• The expert has difficulties describing how

he solves the problems.
• If the knowledge engineer does not know

the terminology, the expert may have diffi­
culties being understood.

• Cooperation between the knowledge engin­
eer and the expert is necessary. This means
that the expert must believe in the project
and trust the knowledge engineer. Otherwise
he will probably lack the motivation for
communicating the information.

• Experts forget to mention facts which are
obvious to them, for instance assumptions in
the problem solving.

• The expert says what should be done i.e
gives a text book explanation which are not
what the expert would really do. Even
though his method of work build on the

18

2 Expert systems
knowledge once read, his expertise is in the
development o f experience. It is this knowl­
edge which is valuable to obtain.

• The expert can only tell what he can verbal­
ize. Something never before expressed in
language is difficult to explain. And prob­
lem solving may have become a routine,
making it difficult for him to explain the
structure. Knowledge has been compiled.
This will make the expert give ‘black box’
answers such as ‘it is the sensible thing to
do’.

Several techniques have been developed for
this task. The standard method for knowledge
elicitation is interviews. There are several
techniques available to improve the collected
information, for example structuring the inter­
views (Brummenæs 1990). The collected
knowledge is then coded in a knowledge base
editor. Other methods are protocol analysis,
scaling techniques and card sorting.
Interviews
In the interview situation the knowledge engin­
eer questions and the expert answers. The
interviews in the knowledge elicitation phase
vary from totally unstructured to formal struc­
tured interviews. A structured interview is
planned by the knowledge engineer, who has
determined specific goals and questions ahead
of the interview. An unstructured interview
develops more unexpected, and the questions
to the expert are more spontaneous and ran­
dom.
Unstructured interviews are not effective and
are often only used to help the knowledge
engineer to become familiar with the domain
and its terminology. Structured interviews are
used when the knowledge engineer has a
general knowledge of the domain. They are
good at concentrating the interview on a
special subject.

There are different ways of structuring inter­
views for instance:
• Scenario simulation, where elementary

problem situations are defined. The expert
chooses one of the situations and talks
through the reasoning towards a solution.

• 20 questions. The expert gets a problem to
solve and is allowed to ask 20 questions to
the knowledge engineer during the problem
solving. The expert has to pick question
with a high information value. The purpose
is to reveal the order in which he tests the
rules.

It is considered important to collect as much
information as possible in the interview. Nor­
mally the interview is tape recorded, concur­
rent with use of notes. Another possibility is to
video record the interview. Technical help
should only be used if it does not disturb the
expert.
Protocol analysis
Protocol analysis is a method used in psychia­
try to examine how people solve problems.
The analysis starts with observations of an
expert solving a problem in the domain. The
problem can be real or constructed. Observa­
tions of the expert and what he says is written
in protocols. The purpose is to reconstruct the
underlying structure in the work of the expert.
The protocols can be written during the prob­
lem solving - parallel - or afterwards in retro­
spect.
An advantage of this method is the possibility
to directly observe the expert solving problems
and the information he uses. But the protocols
are often ill structured, and it may be necess­
ary to make many protocols to cover the
problem area.

19

Scaling techniques
In the scaling techniques the expert judges
concepts from the domain in a way which
gives a measure for the psychological distance
between concepts. This measure reveals simi­
larity or relationship between concepts in the
experts opinion. Different scaling techniques
are:
• Multi dimensional scaling (MDS), where the

expert, for all pairs of concepts gives a
point according to the closeness of the
concepts. Low values indicates short psy­
chological distance, which means a close
relationship. MDS arranges the concepts in
a multidimensional space according to the
points. The distance between points in the
space reflects the relation between them. An
advantage with this method is that it is
formal. There is some questions about how
to interpret the result.

• Repertory grid is a representation of the
experts view of the domain. It consists of
elements, concepts and a scaling of each
concept for each element. Elements are
examples from the domain for instance
sicknesses if it is a diagnosis system, these
are the subjects whose relations are to be
examined. Concepts are a bipolar attribute
which all elements possess for instance
friendly-unfriendly.
First the elements and the concepts are
found. Then all elements gets a character on
a scale - for instance 1 to 5 - for each con­
cept. The character shows the experts judg­
ment of the degree to which the element
possess the concept (attribute) or the oppo­
site. The analysis shall reveal similarities
between elements. The grid may be ana­
lyzed several ways. It may be reorganized
so similar elements are close. Correlation
coefficient can be calculated or the grid may

be analyzed statistically by for instance
cluster analysis.
The method is quick, but a problem is that
all elements are assumed to be included.
However only a limited number can be
included if the combinatorial explosion is to
be avoided.

Card sorting
The purpose is to reveal the experts own
classification of concepts and relations between
concepts. The concepts of the domain are
written on cards. The expert has to sort these
cards in groups according to relationships and
name the groups. The analysis gives a picture
of the organization of concepts in the domain.
A condition is that the domain is hierarchically
organized.
Induction
Induction is the construction of a set of rules
from a set of examples. The expert is asked to
provide a training set of critical cases with
examples of problems from the domain and the
solution to them. The cases should encompass
crucial and complete information. The cases
are distinguished by a set of attributes, in a
similar way to the repertory grid technique,
and the data should not be noisy. An inductive
algorithm - of which the most famous is called
ID3 - is applied to the set and eventually forms
a decision tree. A crucial item for the correct­
ness of the induced rules is that all relevant
information is encompassed (Hart 1986, Shaw
& Woodward 1990).
The different techniques do not provide the
same type of information. There is a difference
between the information from the formal
techniques and interviews (Burton et al 1990).
Burton et al (1990) compared the relative
efficiency of four methods: structured inter­
view, protocol analysis, laddered grid and card

20

2 Expert systems
sorting. They measured the efficiency in infor­
mation per time unit and found that protocol
analysis performed least efficiently. In an
evaluation of the elicited information by the
expert the outcome o f the protocol analysis was
also rated lowest. The efficiency of the grid
technique and card sorting was high and they
provided complementary knowledge to the
standard interview. The interview produced the
highest count of true clauses.

2.7.3 Tools
When choosing a tool for expert system build­
ing a variety of options exists. General purpose
languages as LISP, PASCAL and FORTRAN
can be used as well as general-purpose repre­
sentation systems developed specifically for
knowledge engineering.
One strategy is to implement from scratch in
one of the standard programming languages.
LISP is chosen in many AI applications espe­
cially because it is oriented towards symbolic
computation. Whatever programming language
is chosen, an expert system requires two major
components: An inference engine and a body
of rules. A language or set of concepts to
express the rules has to be built. Once the rule
language has been defined, the inference
engine can be built in terms of the general
framework or architecture selected.
Rather than building an expert system from
scratch, it is sometimes possible to borrow
something from a previously build expert sys­
tems. This strategy has resulted in several new
software tools for knowledge engineering,
which may be described as skeletal systems for
instance EMYCIN. In these systems the rules
in the original systems are removed and the
rest reused. Some problems may occur in
using these tools:

® The old framework may be inappropriate
for the new task.

• The control structure may not match the one
desired.

• The rule language may be inappropriate.
If these difficulties are overcome, it is possible
to build a new system much quicker than from
scratch.
New software tools - shells - have been built.
They are not build by borrowing from expert
systems, but resemble these systems in that
they contain the inference engine and the user
interface which is the surroundings to the
knowledge base. These software systems are
more or less flexible in the possibility to affect
the control and inference, and to represent the
knowledge. The limitations above also count
for shells. When using a shell the paradigm
selected in it must ordinarily be used in the
constructed expert system, so it is important to
select a shell which suits the task. In exchange
one gains a quicker development.

2.8 Agricultural applications of
knowledge based system concepts
The first papers on agricultural applications of
knowledge based systems appeared around
1985 (McKinion & Lemmon 1985, Jones
1989). At that time the recent development of
fast cheap personal computers and specialized
software systems made knowledge based
systems a promising tool and there was con­
siderable interest in these presentations.
Since then there has been a decline in enthusi­
asm among agricultural researchers. One of the
reasons for the general lowering of expecta­
tions is the fact that most of the described
systems never seem to get into production use.

21

This chapter will review several known knowl­
edge based systems - prototypes as well as
those in use - to set the state of the art. It will
discuss possible explanations for the present
absence of operational systems and lastly give
ideas for future development and use of knowl­
edge based systems in agriculture.
Knowledge based systems can be used for
many purposes and are often classified accord­
ingly, for instance diagnosis systems. In this
chapter the systems will be classified according
to the first classification mentioned in section
2.2. This is not always easy, most systems
comprise parts which belong to different
classes. In this situation the system is classified
under one - preferably the dominant - class.

2.8.1 Interpretation
FinARS (Boggess et al 1989) is an expert
system for evaluating the overall financial
health of farm businesses. It was developed
over an 18-month period by two experts and a
knowledge engineer, each of the experts spend­
ing 150 h on the project. The system uses a
minimal data set to reach three key economic
indicators (liquidity, solvency and profitability)
to evaluate the financial health. This evaluation
is quick and easy and reveals problems, but
cannot provide indepth diagnosis of the source
of financial problems. The system was evalu­
ated by a test against ten financial analysts,
which showed agreement among the analysts
and FinARS rankings.
COTFLEX (Stone & Toman 1989) is a system
which partly interpret the economic situation of
a farm, partly predict and plan pest control. It
integrate expert system technology with simula­
tion models. This system consists of three
advisors, two of these use a simple rule based
system to call and analyze output from a
simulation model - CIRMAN - of whole farm

economics to advice on economic features
(Helms et al 1990). The model is called exter­
nally, making the knowledge in it a blackbox
to the system. The third advisor, a pest man­
agement advisor, is a diagnostic expert system
that gives advice on control of three key
insects of cotton, using a cotton model and
insect pest models. Besides the models COT­
FLEX is integrated with a database. The
database stores field sampling data from scout­
ing sheets and information provided during
consultations. This forms the basis for input
data to the simulation models called by the
system during consultations.
The National Dairy Herd Improvement Associ­
ation in the USA maintains a national database
of information on cow and herd performance,
including information on butterfat content,
protein content and milk production. DHLES
(Whittaker et al 1989) compares individual
herd data against standard data from the natio­
nal database by extracting important features
from the two datasets. Knowledge for the
program was obtained from magazines and
later refined by specialists in interpretation of
lactation curves. An important feature for the
program is an associated communications
software for automatically accessing the data­
base and extracting the appropriate data.

2.8.2 Prediction
Probably the most widely known agricultural
application of an expert system is COMAX.
COMAX advises farmers on their management
practices ranging from irrigation to the rate
and timing of fertilizer application. COMAX is
the expert system part of the model based
system GOSSYM/COMAX, where GOSSYM
is a dynamic simulation model o f cotton
growth and yield which have been under
development for over 20 years. The model was
too difficult to initialize and interpret for others

22

2 Expert systems
than the developers. But with COMAX as
extension to the model it is possible to use.
COMAX applies rules to create the necessary
data files to run GOSSYM for a particular site
and scenario. It also uses rules to interpret
model results to make specific recommenda­
tions. The system was tested first time on two
places in 1984 and since have been tested in 14
states. Users of the system estimated the value
in 1987 to be between 100 and 350 $ per
hectare (McKinion & Baker 1989).
The developers of SMARTSOY have taken a
similar approach. Their software makes insect
management decisions in soybeans using
SOYGRO, a soybean crop model, in combina­
tion with an expert system (Batchelor & Mc­
Clendon 1989). The expert system portion of
the software is based on the knowledge of a
soybean extension entomologist. Rules predict
damage rates of different populations of the
four major insect pests of soybean on foliage
and seeds. The range of damage rates are
used in a series of simulation runs to evaluate
their effect. The differences in yield between
the simulations are used with the expected crop
value to determine the cost of not treating.
Rules were also developed to recommend
specific insecticides in different combinations
of insect populations. SMARTSOY was tested
on eight soybean fields in south Georgia in
1988 and the results were in agreement with
the expert for about 80 % of the scenarios.
QSOY (Gold et al 1990) is an expert system
for decisions on use of insecticides to protect
soybeans against corn earworm. QSOY is
integrated with two models, one is SOYGRO,
the other is a heliothis population model. The
system has not been tested yet.

2.8.3 Diagnosis
WEEDEX (Ballegaard & Haas 1990, Haas &
Ballegaard 1988) is a system for identification
of weed seedlings. It is written in PROLOG
and contains about 240 rules. The system
contains knowledge of 80 species of weeds and
carries out identification in dialogue with the
user. This identification is carried out partly by
classifying the plant according to leaf form.
This classification is a major source to errors
in the present system. The classes of leaf
forms are so close that it is difficult to classify
correctly with only a verbal description of the
leaf forms available. WEEDEX is intended to
be integrated in a database system for weed
control.
PEST (Pasqual & Mansfield 1988) is a proto­
type rulebased expert system designed to pro­
vide insect identification and control advice for
farmers in Western Australia. Knowledge
sources for the system were an identification
key, a guide to chemical control and an ento­
mology expert. The restrictions on crops and
pests are not discussed but the system contains
only 38 (PROLOG) domain rules. Though the
system has not been evaluated, it is concluded
that the domain is suitable for expert system
development and that future developments
could include integration with decision-making
abilities in other areas.
Another very small diagnosis prototype system
is reported by Gaultney et al (1989). It is an
expert system for trouble-shooting tractor
hydraulic systems. The knowledge source for
the system was a diagnosis manual. The sys­
tem should be able to guide a mechanic
through testing and diagnosis of the hydraulic
system on a tractor.
POMME (Roach et al 1987) is an expert
system for apple growers to help them manage
their orchards. It concentrates on two things.

23

On preventing losses from pests by choosing
pesticide and spray time, and on weather dam­
age recovery. The pest part of the system gives
special attention to apple scab, cedar rust and
San Jose scale - the most serious pests in the
eastern U.S. apple belt. The system incor­
porates a model of the apple scab which simu­
lates the growth of the pathogen under given
conditions and the physiological reactions of
the host. If the symptoms and weather condi­
tions do not lead to a diagnosis the apple scab
model is used for a prediction of the fungus’
state.
FINDS (Kline et al 1988) is a front end to a
linear programming model for machinery
selection.
CUE (Morgan et al 1989) is a program with
the goal to develop a series of knowledge bases
to aid in selecting cultivars for a wide range of
crops grown in Scotland. The problem of
selecting the right cultivar consists in properly
matching cultivar attributes with the character­
istics of particular farms. The purpose of each
CUE knowledge base is to read and analyze
information in a specific crop database (the
national database for all variety trials through­
out the UK) and provide the farmer with a
short list of suitable varieties from which to
choose. The first application developed was for
winter wheat.
PALMS is an expert database that contains
information on palms (Beck et al 1989). The
program contains information such as plant
characteristics, care, growing requirements,
pest problems and suppliers. The system was
developed using a special data modelling
language, CANDIDE, that provides a notation
for describing objects. The system is intended
to help customers choose the right palm for
their environment.

2.8.4 Planning
Martinsen et al (1986) are three Danish stu­
dents who have developed a prototype expert
system. The system gives advice on pesticide
plans in beets for the month of May, consider­
ing weed occurrence , - number, and weather.
Beets as well as weeds are considered to have
a standard developmental curve with a fixed
count of days between developmental stages
and a procentual restrictive influence from
certain weather conditions. The experts cooper­
ating in the project were satisfied with the
system performance.
Wain et al (1988) reports on another prototype
- an advising system for Scottish sheep
breeders. Scottish hill farmers have a problem
because the summer is too short for the lambs
to reach their saleable body weight. The
farmer therefore has to decide whether to
finish the lambs on the forage crops at dis­
posal, or to sell them to other farmers. The
program implements the problem solving
strategy of an expert manager. The strategy
showed to be very algorithmic, with expert
judgement only apparent in two phases of the
problem.
Yoeli et al (1989) describes a prototype system
for planning aerial operations for chemical
applications. The prototype is an implementa­
tion of heuristic methods for planning the
aerial operations in an area with a large num­
ber of fields to be serviced. All the aircraft
depart from one base as a start, but reload and
refuel from forward strips during the day. The
heuristics finds an optimal way of allocating
aircraft to fields and for selecting which
refuelling strips should be manned.
EASY-MACS (Huber et al 1990) is a knowl­
edge based system supporting integrated pest
management in apples for the five most serious
apple pests found in New York orchards. The

24

2 Expert systems
system was designed as a series of separate
small knowledge bases, each dealing with its
phenological stage. Databases serves as a
record of the results of independent consulta­
tions and as communication between the know­
ledge bases, so that information gained in one
session is available for use in a later session.
A lot of features is integrated with the last
planning system. CALEX/cotton (Plant 1989)
is the first system build with CALEX. CALEX
is a blackboard system where a central part is
a scheduler which uses the blackboard to plan
activities according to their mutual influence.
CALEX can be equipped with knowledge bases
as well as ordinary procedural programs. All
o f these exchange information by access to the
common blackboard.

2.8.5 Monitoring
Doluschitz (1990) describes a monitoring
system for registering and recording of data in
milk production. Sensors collect information
such as milk yield, milk components, body
temperature, liveweight development and
nutrient- and water intake, and an expert
system analyzes the behaviour and notifies the
farmer when abnormal situations occur.

2.8.6 Control
MISTING (Jacobson et al 1989) is a real time
greenhouse monitoring and control system.
Misting systems are especially important for
plant cuttings during propagation where they
are highly vulnerable to water stress as well as
over-watering. Control of misting systems in
most commercial greenhouses is based on tem­
poral setpoints. Dual timers set the interval
between mistings and the duration of misting
events, and are adjusted every few days during
crop growth according to age, temperature and
relative humidity. MISTING was based on the

perceived optimal strategy of an experienced
grower. The micro computer communicated
via a telephone line with a monitor/controller
in the greenhouse. Sensor data were provided
as facts to MISTING which returned setpoints
to the controller, which in turn regulated
misting line solenoids. The system ran for 30
days following the growers strategy.
Another system for monitoring and control in
greenhouses is described in Fynn et al 1989. It
is a system for nutrition injection management
in greenhouses. The nutrition consumption of
plant is dependent on the growth which again
is dependent on the weather. The system inte­
grates three knowledge bases and a weather
prediction to decide on the optimal formulation
and application rate. Input to the system
includes initial parameters (such as planting
date,variety and latitude), values from sensors
(such as temperature, pH, solar radiation),
calculated values (such as crop physiological
age, time, date) and once a day weather fore­
cast values input by the operator. Output from
the system regulates the amount of water irri­
gated and set the nutrient injectors. The system
automatically anticipates plant requirements
and adjusts equipment to optimal nutrient and
water supply. The system is implemented and
is being tested.
These control systems involve using values
from sensors to make automatic setpoint ad­
justments with minimal user involvement. This
type of problem has the obvious advantage of
a narrow domain, the input and output is well
defined which facilitates the knowledge acqui­
sition. In addition there is no need to consider
help facilities or user interface.

2.8.7 Discussion
Obviously very few of these systems are in
production run. From a commercial viewpoint

25

only few of the systems described could be
considered successful although the designers
generally say that their domain is very suitable
for expert system applications. FinARS seems
to be a viable system, and so does GOSSYM-
/COMAX which have been successfully tested.
In Denmark the prototype WEEDEX is
planned to be integrated with a database pro­
gram. If a better classification procedure is
found it might then be viable. On the other
hand most of the projects are purely academic,
and as such they can be considered a success
though not a commercial, because they have
been useful for evaluating knowledge acqui­
sition procedures as well as provided training
of people who continue to be active in the
development of decision aid systems.
Expert system technology has been considered
a new programming paradigm where declara­
tive rather than procedural programming is
used. Many projects have been initiated with
expectations of shortcuts in system develop­
ment. A recent Danish report (Harder 1990)
describes five expert system projects where the
conclusions are that expert system program­
ming paradigms are not a shortcut and that
traditional approaches often are better routes to
success. In those five projects it showed up
that most ended up using ordinary algorithmic
programming to a great extent. This can raise
the question whether these systems are real
expert systems or not. In an article Jones
(1989) discusses this problem and concludes
that the goal is to deliver skilful decision
making systems and that the best tools for the
job should be used in delivering this.
Looking at the systems described, the con­
clusion about the state of the art is: many
projects, few products. What are the trends in
systems? It seems that stand-alone expert sys­
tems are more successful the narrower and
more goal-oriented the project is. The trend in

the systems development though seems to be:
integrating expert systems with other kinds of
software - for instance models and databases
(Barrett & Jones 1989). In this way the AI
techniques are used in connection with ordi­
nary system building techniques. At all time
using the best tool.
Expert system techniques may only be used in
part in these hybrid expert systems. Expert
systems can be built into larger systems, where
the expert system is only a minor module in
the whole. It may even be a question of
whether they are expert systems in their strict
definition. The knowledge based techniques
may be used for systems where the goals are
more moderate than in ordinary expert system
definition. For the user integrating all tools
means a great advantage. He could for instance
be able to use the same databases for saving
data as for running a decision aid program.
The perspective in integrating expert systems
with other kinds of software is that the use of
traditional tools for specific purposes will
improve the performance of the decision aid
programs. Similarly traditional systems may
have an advantage of using knowledge based
techniques.

2.8.8 Future use of knowledge based systems
in agriculture
In many fields the use of knowledge based
techniques seems to have come to stay. Over
the years evolution has taken place and now
expert systems are often used in integration
with other software. The same trend will
probably be seen in agriculture. The systems
will tend to integrate several different software
types and to be useful for different tasks.
The future will bring expert systems in agricul­
ture. The technique is especially suited for

26

2 Expert systems
building decision aid systems and monitoring
systems so the future will probably bring us
systems for for instance monitoring and con­
trolling climates in greenhouses, systems for
aiding in planning field operations and other
sorts of decision aid in agriculture as well as
model based systems.

3 WEEDOF, a prototype of an expert system
The construction of expert systems, as men­
tioned in section 2.7, is an iterative process. It
starts with identification of the domain or
subject for the system, and the goals for the
development. When the first initial analysis of
the chosen domain has been carried through,
the programming tool may be chosen.
Knowledge is collected in the knowledge
acquisition phase and formalized to make it
possible to represent it in the language of the
programming tool. After a count of iterations
of knowledge acquisition and implementation
the system will be finished.
This chapter describes the development of a
prototype - WEEDOF. The sections follows
the construction process. The first section
treats the choice of domain. In Section 2
choice of tool is treated. The chosen expert
system shell - EGERIA - is described in sec­
tion 3. Section 4 describes the knowledge
acquisition phase with the methods used:
Literature analysis, a new method in knowl­
edge acquisition, and interviews. Section 5
describes the implementation in the shell.
Section 6 is an assessment of what is missing
to make the prototype a finished system. And
section 7 is summary and conclusions.

3.1 Choice of domain
As a part of this project the techniques for
construction of knowledge based systems
should be used for creating a prototype. One of
the proposed problem domains was non-chemi-
cal methods of weed control. Other domains
were control of couch grass, and sclerotinia on
rape. Non-chemical control of weeds was obvi­
ously the most complex domain. The others
were both very narrow and looked straight
forward to solve using traditional methods.

The complexity was seen as an advantage here,
as the building of the prototype was an infor­
mative experience, and the complexity would
give a chance to deal with many types of prob­
lems in the construction process. Furthermore
the expert from the Institute of Weed Control
assigned to the project seemed interested, and
willing to spend the time needed for the devel­
opment. He also had a little programming
experience enabling him to better understand a
computer program, and what computers can
do.
Old traditional forms of weed control include
preventive methods as balanced crop rotations,
weed free seeds, good soil preparation and
good growing conditions, as well as mechani­
cal methods.
Today these methods are somewhat eclipsed by
chemical control methods, which are much
more effective. Mechanical control has, for a
long time, only been used in organic farming.
Recently a growing interest has emerged for
alternatives to chemical control. One of the
reasons is the consumers interest in a minimal
use of pesticide. Likewise recent dictation of
large reductions in pesticide use by the Nation­
al Agency of Environmental Protection has
renewed interest in alternatives to herbicides.
Control of weeds by non-chemical methods has
proven to be very difficult. A lot of factors
influence the growth of crop and weeds on a
field. The whole idea in growing a crop with­
out using herbicides involves using all means
to strengthen the crop and give it a high poten­
tial for competition. At the same time the
weeds should have bad conditions for growth
and development.

28

3 WEEDOF, a prototype o f an expert system
The aim for mechanical control is to damage
the weeds sufficiently enough to kill them or at
least make them bad competitors. If mecha­
nical control has to be used, the crop is likely
to be damaged also due to the small selectivity
of the mechanical methods. The effect of
mechanical control is thus influenced especially
by the weather conditions. Rain can make the
effect of harrowing on the weeds negligible.
The harrowing tears the weed up, but rain
afterwards will make it possible for it to root
before drying out. Soil type, type and method
of treatment, and crop and weed size also
influence the effect and make the result hard to
predict.
To replace part of the herbicide use by non­
chemical methods requires research and devel­
opment to improve the methods. This research
started some years ago on the Department of
Weed Control, The Danish Institute of Plant
and Soil Science, at Flakkebjerg. Progress has
been made in improving the methods, and
establishing the relations between conditions
for control and the resulting effect.
As the work in the project was purely
research, and the goal merely was to produce
a prototype, no calculations of economic or
other benefits of the development were made.
In the light of the demand to diminish the
pesticide use and the following need for alter­
native control methods, the most recent knowl­
edge in the area will be needed to effectively
control the weeds. In the organic farming
where these non-chemical methods are the only
used, the consultants also reports a need for
knowledge on the best use of these methods. A
quick propagation by means of knowledge
based advice systems will probably become of
practical importance.

3.2 Choice of tool
For development of rule based systems two
types of developmental languages are possible:
conventional languages or expert system shells.
Conventional languages like Pascal, C, Prolog
or LISP give great flexibility but demand ever­
ything to be programmed from scratch. Shells
contain algorithms and routines for many uses
and reduce the time for prototyping, but give
less possibility to control the end system.
For the development in this project a shell was
chosen, partly to experience such a program­
ming tool, partly to speed the development.
The choice of the shell took place in cooper­
ation with researchers on another expert system
project for discount reasons. As the tool was
going to be used for several prototypes, the
shell preferred would have several knowledge
representation facilities, and preferably several
control capabilities. The shell chosen was
EGERIA, developed and marketed by Exper-
tech Ltd. In Denmark Axion A/S is the dis­
tributor. EGERIA is delivered as a develop­
ment - and a runtime license.

3.3 The expert system shell,
EGERIA
Egeria is an advanced expert system shell with
many forms of knowledge representation. The
language though resembles more a program­
ming language than a rapid prototyping tool.
The emphasis in EGERIA is on strong typing
like in most ordinary programming languages.
Knowledgebases, known as models, are devel­
oped by writing an ASCII source file and
compiling it. The windowed interface is spec­
ified in the source while the actual appearance
to the user is defined in a separate window
editor.

29

3 *

EGERIA permits both declarative and pro­
cedural programming. The syntax is highly
structured and consistent but it is difficult to
intuitively read the knowledge, consequently
the application’s knowledge cannot be shown
directly to the expert for comment and correc­
tion. It offers an array of knowledge represen­
tation features including simple types, classes,
objects, relationships, groups, tasks, pro­
cedures and functions, collectively called
items.

3.3.1 Knowledge representation
Data values are held in typed variables much
like conventional programming languages. The
simple types are CONDITION, STRING,
REAL, INTEGER and PROBABILITY. Simi­
lar to Pascal an enumerated type can be spec­
ified. Variables are defined by declaring their
type, name and a ‘derivation expression’. The
derivation expression describes all the possible
ways of finding a value for the variable and
may include a variety of test and expressions.
Condition variables are similar to booleans in
programming languages but can take the value
UNKNOWN in addition to TRUE and FALSE.
This derivation expression defines a condition
variable:
CONDITION corn IS

cropanswer IN {winterrye,winterbar-
ley, winterwheat, springwheat,
springbarley}

This is the EGERIA equivalent of a rule.
String variables hold text strings of variable
length. Integer and real variables hold numeric
data and probability variables hold a real num­
ber between 0 and 1. All numeric variables are
stored as a pair of numbers ie a range repre­
senting the current best estimate of the value.
As more information is gathered the numbers
converge.

The enumerated type allows the programmer to
define a new type with a set of values. Vari­
ables of this type may be single or multiple
valued. There is a restriction on the allowed
values of an enumerated type. Values must
only appear in one enumerated type definition
and must not clash with reserved words. This
first condition can cause problems. For
instance one may want to have menus with all
possible crops to select between in some parts
of a program, and in other parts one may want
to restrict the choice to only wintercrops. As
the same crops are included in these two
enumerated types this is illegal.
EGERIA allow the use of multi enumerated
variables. These contain sets of values, for
instance a variable weed_population can con­
tain the set of weeds present on a field. For
multi enumerated variables set manipulation
functions and operators are provided. For
example IN to test set overlap.
Variables of the same or different types can be
formed into a group and addressed as a single
variable. A group variable actually holds a set
of references (pointers).
EGERIA provides object oriented knowledge
representation. Classes describe concepts with
relating attributes, tasks, procedures and win­
dow definitions. The items becomes slots of
the class. One class may inherit from any
number of classes which in turn may inherit
from any number of other classes. Instances of
classes, called objects, can be defined statically
in the source or created dynamically using the
CREATE command or a relationship order.
The values of class variables (defaults) may be
overridden at the object level:
OBJECT weed couch_grass WITH count = 12

30

3 WEEDOF, a prototype o fa n expert system
Defining classes within classes allows compo­
nent part information to be represented, The
outer class could for instance be plant the inner
classes root, leaf and stem. This is not a hier­
archical structure - the attributes of the outer
class are not inherited by the inner class but
can be accessed.
Variables in a class can be referenced with the
OF operator. Although it should be possible,
problems have been encountered in referencing
variables from classes in one line of the hier­
archy from another line of the hierarchy.
Instead it has been necessary to make a refer­
ence from the top class COMMON which can
be accessed by all other classes.
Relationships can be defined as named links
between different objects. One to one, one to
many, many to one, and many to many rela­
tionships may be defined. Primary relationships
create objects to stand in the relationship. For
example:
CLASS people

MANY people offspring RELATING
ONE parent INITIALLY numberofOff-
spring

END CLASS

Each object of class people will have a rela­
tionship with a number ’numberofOffspring’ of
other people - called offspring. The reverse
relation is named parent. Secondary relations
define links between objects that already exists.

3.3.2 Control
Control of consultations is done using ’active
items’. These include tasks, procedures, break
items and explain items. The active items
execute procedural statements and can assign
values to variables, cause backward chaining,
cause questions to be asked, initiate procedures
and so on.

Procedures can only be initiated by other active
items. Variables may be passed as parameters
by the use of groups. The procedural language
is similar to structured languages as Pascal and
includes structures such as loops and if-then-
else constructs.
Tasks contain similar statements but do not
take parameters. Instead they have a condition
clause that indicates when they should be fired.
The condition clause is a logical expression
referring to any item in scope. If it evaluates to
true the task becomes eligible for activation.
Tasks are used mainly to control the progress
of a consultation. When an object is created
any task defined within the class is created, a
task with a WHEN CREATED clause will then
be eligible for activation after it is created.
Builder defined functions can accept any type
of parameter and return a single result. The
body of a function can only include one single
expression. A range of built in functions is
provided for the data types including real to
integer conversion, string manipulation and
mathematical functions.

3.3.3 Reasoning
The major feature in EGERIA is forward
chaining. It ensures that any change of a value
is propagated throughout the model. During the
forward chaining cycle the inference engine
puts all the tasks eligible for activation onto a
stack as it comes across them. When the for­
ward chaining phase is complete the top task is
popped and activated.
The backward chaining is initiated using the
INVESTIGATE command in a task or pro­
cedure. Parameters for the command is a
group of goal variables for which a search for
values shall be performed. The values for the
variables are then deduced by backward chain-

31

ing using the knowledge in the knowledge
base, in the database and if necessary by
asking the user. The chaining continues on
each variable in the parameter list (depth first)
until the condition specified in one of a number
of UNTIL clauses is satisfied. The procedural
part of the particular UNTIL clause is then
executed. Each backward chaining cycle is
followed by a forward chaining cycle to keep
the model self-consistent. This forward chain­
ing cannot be controlled or scoped. In my
prototype I have not had problems with speed
but with larger applications this action may
cause significant delays.

3.3.4 User interface
The default interface is useful in the first stage
of development. Predefined windows are used
for asking questions (with a QUESTION
command), to output text (generated with the
WRITE and WRITELINE commands) and to
show DOS text files.
windows ■
Later the window system will be used to make
application windows. This means defining
logical windows in the source code and map­
ping them to window images designed in the
window editor. The window images are held in
disk files.
Each window may contain a number of fields
for input or output of variables. In the window
definition variables are declared with the
INPUT or OUTPUT keywords defining the
nature of the field. The variables are declared
in the order by which the fields are numbered
in the window design. Different formatting
options are available for output. When variable
values are changed in the system the window
fields are updated as well.

Menus can be generated easily: A multiline
field is defined in a window, and the field is
defined to contain an enumerated type variable.
The values in the type then appears in the field
of the window when variable values are asked,
and one or several alternatives can be chosen
according to the variable type. With a single-
line field the alternative values can be dis­
played using the cursor keys.
In numeric fields the user can enter single
values or a range. For all variable types the
user can enter unknown input with the default
string *!’.
Windows can be temporarily or permanently
displayed using procedural statements. When a
value for a variable is sought all variables
defined in the window must be answered. Text
output can be directed to any window whether
it is displayed or not.
Breaks
Break items are a mechanism for trapping
keystrokes and response according to the key
by executing specific procedural code. Breaks
may be global to the model or local to window
or class definitions.
Explanation facilities are provided using the
WHY statement. The command retraces the
line of reasoning in the most current backward
chaining, by executing any EXPLAIN clauses
attached to variables on that path. The
EXPLAIN clauses contains procedural state­
ments, typically output text. That only the most
current backtrack can be traced makes it of
very limited use. Many shifts between forward
and backward chaining or only forward chain­
ing disrupt the line of reasoning.
For questions asked by a forward chaining pro­
cedure there will be no justifications. In
WEEDOF the search changes between forward

32

3 WEEDOF, a prototype o f an expert system
and backward chaining fairly often and the
traces produced by WHY go only one step
back. This is a serious deficiency.
Others
The built-in graphics language supports CGA,
EGA and VGA. A separate image grapper is
provided and should be able to capture images
to be displayed directly from the model, I have
not used this feature.
Reports can be generated during consultations.
Text contributing to the report can be output
with a key number used to sort the text by the
key before printing. Reports can be saved on
disk or sent to printer from within the model.
3.3.5 Programming environment
The development environment has a window
editor, syntax directed editor, and relative easy
switching between editor, compilation and
execution.
The editor is a multi-file editor. All files from
a chosen model are loaded together and are
available for editing. Text may be copied
between files. The syntax directed editor
facility works by inserting syntax templates
into the model file. In practice it is of very
little use. Besides this there is no help system
attached to the editor. In the system parameters
an external editor may be specified.
The compiler is quick and produces a listing
and cross-reference output from which the
editor (from here only the default editor is
used) can be switched on to show the line with
an error. The error messages are unhelpful,
sometimes misleading, and the compiler does
not always find the correct error line. Fixing
syntax errors are therefore very tedious and
especially in the start very time consuming.

Program execution is hard to control. A simple
debugger, activated from a break, is provided
which can be invoked during execution to
browse variable values and class/object struc­
ture. A regular trace facility to follow the
reasoning progress in the program is not
included, which makes it very difficult to track
down application bugs.
The runtime system is used from the develop­
ment environment to see the running applica­
tion.
The window editor has a separate menu that
allows files of window images to be created,
deleted, copied etc and individual windows to
be edited. In the editor the window size, colour
and position are specified along with the fields
and texts. Fields are sequentially numbered as
they are created, but may be reordered. Once
windows are defined they may be copied and
may also be pasted to the background while
editing other windows to help positioning.
External functions can be linked into EGERIA.
They can be used in the model as a built-in
function. Roll-out of the model is supported to
make space for called programs. I have not
used these facilities.
Access to DOS files are provided through
FILEIO blocks, defined in the same way as
windows. A FILEIO block with no fields
defines a stream file. Through the FILEIO
blocks EGERIA has interface to files in
DBASE III format, the fields of the record
corresponds to the input/output fields of the
FILEIO block. The USE command can send
output to the specified file, and ASK and
INVESTIGATE statements seek input from a
file.
USERIO blocks are used to handle devices
other than files.

33

3.3.6 Hardware requirements
EGERIA runs on PC’s under DOS with a
minimum requirement of 640KB. The software
itself takes up 900 KB on the harddisk.
Examples are provided with the program. But
these only shows procedural code and window
management, not object-oriented facilities,
database interfaces or other more special
things. Three manuals are provided, one 435-
page book called ‘Expert systems with EGE­
RIA’ (Anon. 1989a) which describes the
concepts of EGERIA. A PC-DOS reference
manual and a ‘Technical Reference Manual’
(Anon. 1989b and c), the examples in this last
book are very short and sometimes lack clar­
ity. The two first books lack an index which is
very irritating.

3.3.7 Summary
EGERIA is a sophisticated tool with excellent
knowledge representation facilities, and good
inference control capabilities. It has complete
truth maintenance through the automatic for­
ward chaining, which cannot be controlled.
Furthermore it seems very quick.
It has some weaknesses:
From a programmers standpoint the develop­
ment environment is old-fashioned. For
instance, it does not include graphic facilities
for displaying c1ass-hierarchies. The compiler
is frustrating to use, it is often unable to find
the correct error line, and the error messages
are very unhelpful. There is no trace facility.
The syntax is difficult, and the complex lan­
guage takes time to learn well.
An advantage normally claimed for declarative
programming is that the knowledge represented
in the language is accessible to others than
programmers. The expert are then able to read
and understand the knowledge implemented,
which aids in the knowledge acquisition pro­

cess. This is however not the case for EGE­
RIA - as earlier stated the syntax and language
is difficult, which makes it difficult to read the
knowledge.
Finally there is a problem with explanations. It
is considered very important for expert systems
to be able to explain conclusions and the
reasons for asking specific questions. In EGE­
RIA there is no possibility to produce justifi­
cations and explanations can only be generated
when backtracking is the only regime used.

3.4 The prototype, knowledge acqui­
sition
Knowledge acquisition for expert systems is an
iterative procedure, as described in section 2.7.
The procedure perhaps starts with reading
some text books about the subject to become
acquainted with the domain. Then the knowl­
edge acquisition procedure goes on cycling
through knowledge elicitation - usually from an
expert - data analysis and knowledge represen­
tation.
In the development of WEEDOF this pro­
cedure was different. The knowledge engineer,
having herself an agricultural degree was
acquainted with the domain from the start.
Text books were used in the beginning of the
knowledge acquisition process. The knowledge
in the text was analyzed and formalized. So a
great deal of knowledge was collected before
the knowledge elicitation from the expert took
place.
As described earlier the domain for the proto­
type example had been chosen to be weed
control in organic farming. The Department of
Weed Control in Flakkebjerg was interested in
cooperating in development of an expert sys-

34

3 WEEDOF, a prototype o fa n expert system
tem. One of the experts in weed control in
organic farming was willing to participate in
the development of the system.
This chapter will describe the process which
started with a literature analysis of selected
texts. On the basis of the information extracted
from the texts, interviews were planned with
the expert. Each interview provided informa­
tion which was formalized and build into
prototypes.

3.4.1 Literature analysis
Texts are not always used in knowledge acqui­
sition. When they are used it is only informally
for the knowledge engineer to get acquainted
with the domain ahead of the knowledge acqui­
sition process. The different use of texts in this
project was inspired by the work described in
two papers on the knowledge acquisition for an
expert system to control biological water
cleaning systems (Østerby 1990, Sørensen
1987).
The knowledge acquisition procedure started
with collecting possible candidates of texts for
use in the literature analysis. Ideally the
material for the analysis should be a text book
giving a thorough description of elements,
causal relations between these and methods in
the domain.
The expert was asked to suggest texts, prefer­
ably text books on the subject. If such did not
exist then texts which gave an introduction to
the domain. The expert came up with 12 texts,
most of them papers on research subjects.
Three of the texts though were introductory
texts - two of them chapters from a book about
weed control written by researchers at Flakke-
bjerg (Rasmussen 1990, Rasmussen & Vester
1990), the third an examination treatise. These
three were selected for the analysis with prior­

ity on the two chapters from the weed control
book.
The text in the selected papers was read thor­
oughly. Every sentence with elements of
relevance was marked. Even for someone not
familiar with the field these sentences can be
identified by the content of words specific for
the domain - words, that do not appear in other
contexts eg fiction (appendix 1). The marked
sentences were collected in a document, a sort
of knowledge survey.
The knowledge survey was an incoherent set of
sentences containing information on concepts,
causal relations, attribute values etc written out
directly as it was in the text. Then the sen­
tences were further analyzed. The purpose of
the analysis was to identify concepts and
attributes of the domain, build a hierarchy of
these to clarify their connections, and get a
collection of rules and facts as complete as
possible about the concepts.
Work started by rewriting the rules. The
ultimate goal was to get a collection of rules
and facts in note form, where every note is
short - preferably only one sentence - and
contains one piece of information. This means
that the rewriting implies: Splitting sentences
with more than one unit of knowledge, for
instance the sentence: ‘Hoeing has a bad effect
when conditions are moist or when weeds are
big ’ should be split in a ‘moist conditions’ rule
and a ‘big weeds’ rule. Discovering sentences
where there are hidden inferences - and mak­
ing these explicit, for instance ‘wet soil makes
the crop a bad competitor' - which probably
contains many intermediate inferences about
the effect of wet soil on the parts of the crop
plants, which again effects the competitive
ability. Each sentence should be made as short
as possible. The goal was not obtained by just
one rewriting, several rewritings took place

35

before the sentences had the desired form of
short notes (appendix 2).
During the rewriting concepts and attributes
were identified. These elements can be ident­
ified from the logical form of the sentences. A
grammatical analysis of a sentence will reveal
for instance an attribute being related to a
concept by a ‘for’ as in ‘Dry matter minimum
for couch grass is 3-4 leaves’. For a manual
analysis, grammatical analysis is mostly unnec­
essary as these relationships are intuitively seen
when reading the text.
The identified concepts were then considered
candidates for inclusion in a concept hierarchy.
The upper part of this hierarchy is general and
domain independent (fig 3.1). The top concept
is Everything which embraces all other con­
cepts, ie every concept is a subconcept of
Everything. The concepts in this top concept
or concept class are divided in the concept
classes Attributes, Objects, Situations, Loca­
tions, and Times. These concept classes again
embrace concepts: Objects include Animals,
Plants and Things and so on.
Definitional notes help to build the hierarchy
by building on the upper part. For instance the
notes ‘weeds are plants ’ and ‘Mayflower is a
weed’ would include weed as a subconcept of
plant and mayflower as a subconcept of weed
in the hierarchy. Attributes have a special
entry in the hierarchy and are ordered accord­
ing to the concepts they relate to.
The notes were finally gathered in entries - all
notes relating to one concept were collected in
one entry. Notes concerning several concepts
were placed in all the appropriate entries.
The full analysis included the two chapters
from the weed control book, totally 28 pages
giving an introduction to weeds in agriculture

Everything
Attribute
Object

Animal
Plant
Thing

Situation
Incident

Action
Event

State
Location
Time

Figure 3.1 The upper part o f the concepts
hierarchy which can be used in all sorts o f
domains (From Østerby 1990).

and non-chemical control of weeds. Analysis
on the last of the selected papers - the examin­
ation treatise - was started, but was considered
not to give any further information. The orig­
inal text was rewritten in approximately 240
notes containing around 40 different objects
and attributes. They were grouped in 29
groups or object entries (appendix 2). From
the notes the objects and attributes were
marked and placed in the concept hierarchy at
the appropriate place (fig. 3.2) (appendix 3).
The collection of notes together with the con­
cept hierarchy can be seen as a knowledge
model for the domain. It defines the concepts,
facts about the concepts and relations between
them.

The model was however not complete. And the
different parts of the model had different com­
pleteness, because some aspects of the subject

36

3 WEED OF, a prototype o f an expert system
were treated more carefully in the text than
others.
The texts were intended to give an introduction
to weed and weed control, and covered the
subject in a general way. The text provided
examples on values for attributes as for
instance dry matter minimum, but the lists of
attribute values were not complete. The text
also lacked relations to fully explain the
dynamics in the system, and the relations
between system components. Some of this
knowledge would probably have been included
in a book intended to teach the subject if such
a book had been available.
On the other hand the domain concepts derived
from the text, and the concept hierarchy were
very complete and useful. For an expert sys­
tem to be based on the analysis, it seemed that
the concept hierarchy was immediately useful
but it would be necessary to complete the
models with information from the experts. The
information needed was of several kinds. First
o f all the texts had no description of problem
solving strategies. These had to be provided by
the expert. Secondly the expert had to fill in
the holes from the texts, such as possible
values for attributes, and provide heuristics,
before a complete system could be made.
The time used to make this literature analysis
is hard to calculate, because it was made over
a long period alternating with other activities.
An estimate for a similar, rather narrow
domain and a knowledge engineer with earlier
experience in the technique would be a time
consumption of 1-2 months.

3.4.2 Knowledge elicitation
The next step in the system construction was to
involve the expert. Normally there are only

Everything
Attribute

Plant attribute (12)
Crop attributes (2)
Seed attribute (4)
Harvested crop attributes (1)
Soil attributes (5)
Sowing attributes (5)
Climate attributes (2)

Object
Animal (0)
Plant

Weed
Crop
Seed
Vegetative reproduction organs

Thing
Soil
Harvested crop
Reserves

Situation
Incident

Action
Sowing
Soil preparation (4)
Weed control (5)
Crop rotation

Event
Climate

State
Location
Time

Figure 3.2 Concept hierarchy o f concept
classes fo r the prototype domain. The num­
bers are count o f subclasses in the class
(complete version in appendix 3).

one expert involved in the construction of
expert systems. Some occurrences have been
described where two or several experts have
cooperated (Huber et al 1990). In this project

37

two experts were present in all the interviews.
One of them, originally assigned to the con­
struction, was conducting research in methods
for control of seed propagated weeds -primar­
ily harrowing and hoeing. The other - a cowor­
ker of his - was researcher with expertise in
control of root propagated weeds, and inter­
ested in cooperating in the construction. In the
start the partner was only listening and contrib­
uted by discussing the knowledge, later he
contributed with knowledge on his field.
The literature analysis had provided a back­
ground of a structured representation of con­
cepts from the domain, and some rules about
these. The usual initial series of unstructured
interviews to get acquainted with the domain
was therefore considered unnecessary. The
important topic to start with was decision of
the goal of the prototype and specification of
the problem solving strategy. Structured inter­
views were selected as appropriate for eliciting
this type of knowledge.
Interviews
In the following the interviews are treated one
after another with a description of the goals for
the interview and of the results.
In the first interview the goal was to define the
domain and the purpose of the system and to
establish the problem solving strategies used by
the experts. The first two were achieved by
defining the system boundaries asking about
crop rotations, data types and values relevant
to the system and by presenting the possibil­
ities, and discussing with the experts the kind
of system they would like to build. For the
problem solving strategy the expert was asked
to describe the strategy normally used, infor­
mation always looked for and information only
sought in special cases, to describe some
concrete advice sessions and to make a deci­
sion table which defined conditions and

actions. These questions throw light on the
question from different sides.
However there were too many questions for
one interview and the question about concrete
advice sessions, and the decision table were
put out.
The selection of the domain was easily done.
Weed control in organic farming was selected
because both the experts works in that area.
The experts were asked to make a survey of
data types and values for input and advice in
the domain. The literature analysis had pro­
vided the concepts of the domain, but the
analysis did not include lists of variable values.
The survey listed the relevant values of crops,
weeds, soils etc and in that way defined the
domain to work in. The list of concepts made
by the experts could also be compared with the
concepts list from the literature analysis, to
check for missing concepts.
The purpose of the system caused more dis­
cussion. The researchers intention was to
create a system to help growers better manage
weed control. There are two ways to do this:
Create a system to deal with acute problems
during the period of growth, or a system to
help planning control actions.
A planning system is possible because most
experienced growers have expectations on what
weed problems they will experience in certain
fields and certain crops. This sort o f system
can include preventive actions to reduce the
weed problem. A diagnosis system for acute
problems on the other hand must rely primarily
on mechanical control.
One of the ideas the researchers had before­
hand about the purpose of the system was to
help growers become more adept at preventing

38

3 WEEDOF, a prototype o f an expert system
weed problems by better growing practices,
crop rotations etc. They felt that many of the
serious weed problems stemmed from prob­
lems of bad planning. On the other hand the
problems in most consultations with growers
were acute ones. The discussion ended up with
the decision to start the development on the
planning system, and if there was enough time
to connect a diagnosis system later.
It is generally known that people seldom recog­
nizes the problem solving strategies they are
using (Hayes-Roth et al 1983). The hardest and
most abstract of the questions for the first
interview was the strategy normally used. It
took the experts well over an hour and later
some changes to outline the strategy they used
in advice situations - or more accurately,
would be using in planning advice situations.

The experts strategy showed that when solving
a problem they considered different sources of
weed problems, ie different problem classes in
two levels (fig. 3.3).
Two problem classes were found on the top
level:
• control in cleaning crops, which are crops

in the crop rotation intended to reduce the
weed seed content of the soil by an intensive
control of the weeds. In this group the
expert was of the opinion that the only
relevant control action would be mechanical
(direct control) methods,

• control in other crops.
The difference between these two classes is in
effect a question of: Only treating mechanically
irrespective of the size of the weed population.

(Crop rotation) (Crop inform?)

f expected)leveed probleny

(cleaning croß)

yeV loca

----- /local or genererno I problem
generel

/mechanicaltreating , ,^ possible J g u s e s t o the

.—ü-— v ^ ^ C advice) (advice?) (crop rotation) /growing^ adv ice) (advice) ^ -------- yV ---------- y ' ijracticg
ad v ice)

Cadvice) Cadvice) Cad̂ P) (advice)

Figure 3.3 Sketch o f the first problem solving strategy from the expert.

39

Or considering other control means and only
treating when damage is above a threshold.
In the latter group there were again problem
classes:
• crop rotation problems giving occasion for

advice to change the crop rotation,
• growing practice problems which give rise

to advice on for instance better sowing bed
preparation,

• normal weed problems causing direct con­
trol advices

• soil problems, which could be for instance
drainage problems.

A given weed composition problem could
belong to all of the classes in this latter classi­
fication, so each of them could contribute to
the advice given. A weed problem which is in
part caused by an inappropriate crop rotation
can still be treated by direct control, so the
advice given will include two parts: ways to
control the weeds mechanically and proposed
corrections in the crop rotation.
In the second interview the requirements to the
final system was discussed so was the decision
table from the first interview, and the problem
solving strategy.
In the discussion of the requirements, the deci­
sion was between two proposals which also
had an effect on the problem solving strategy.
• The system could be asked to restrict the

search for solutions to either preventive or
direct control means. In the case of direct
control only the best method should be
output.

• The system gives all possible solutions with
an indication of the effect for instance as
percent effect on weeds or yield.

The experts favoured a system of the second
type, they considered that the success of a

weed control program depended on giving the
growers a possibility to chose between methods
but giving them a tool to make a better choice.
The choice of this system made a selection of
methods based on the users access to the
necessary machines unnecessary.
The problem solving strategy was revised (fig
3.4). The top level of the problem classifica­
tion was removed, because the experts revised
the opinion on the cleaning crops, making
preventive methods relevant here too. The
revised strategy thereby became very simple.
After initial information is collected, the differ­
ent classes of problems are examined. The
order of examination of the problem classes is
irrelevant as none of them influence the results
of the others.
The decision tables was on the agenda again.
The decision tables are a survey of conditions
or state descriptions, and the following appro­
priate actions. The conditions could be weed
population, crop, soil type, crop rotation,
control method etc describing the state of the
biological system. The actions are the control
methods proposed to reduce the weed problem.
At the interview, and before the next inter­
view, seven situation were written. These were
only a very small fraction of the possible
combinations of conditions, and the method
was given up as a way of extracting a strategy
by specifying causes and advices. It gave the
knowledge engineer examples of written
advice, and the discussion about them gave
new information. The experts were also more
comfortable with this more example-based
discussion instead of more abstract talk about
strategies, and felt that the system construction
was really in progress now.
The third interview also tended to be more
practical. The first prototype could show a
possible interface but little else and was dis­

40

3 WEEDOF, a prototype o f an expert system
cussed. From the literature the concept hier­
archy was ready, and the first interviews had
given surveys of relevant values for concepts.
The connection between the conditions and the
advice still had to be defined. The earlier
decision that all advice should contain a
measure of the effect of treatments required
that a method to calculate this should be found.
Finally the strategy for implementing the
system parts was discussed.
In the first place the conditions for considering
problem classes were discussed. It showed up
that the three special problem types crop
rotation problems, growing practice problems
and soil problems could be indicated by speci­
fic weeds in the weed population. The result of
this is that the classes direct control in seed -
and root propagated weeds are always relevant,
but the rest are only considered if there are
weeds in the populations which indicates these
kinds of problems.

For the measure of effect the experts proposed
to use CE (crop equivalents). A CE value is
the count of crop plant one weed plant can
oust. The count of weeds was earlier decided
to be part of the initial questions asked in the
system. For every weed species the experts
estimated one value for CE for spring crops
and one for winter crops. By multiplying the
CE value for each weed by the count, and
summing for all the weeds, the total CE value
can be calculated (3.1)

CEtoul=T,courUi\C E l (3-1)
i - i

This value has to be adjusted by a factor
according to the specific crop (appendix 4).
The general competition ability for the crops
differs depending on for instance growth
patterns. The reduction in yield can now be
calculated by the formula 3.2

Percent reduction in yield = 100xCE,total
CE utal* CP

(3.2)
(C rop inform) (W eed inform)

elxamine weed problem
Æ)irect control seed propagated
V w e e a s J _________

norm alweeds

I Control growing)
^ practice

f root propagated) (C roprotation Vweeas J \ control

Figure 3.4 Final problem solving strategy. The problem is decomposed to smaller problems,
which are solved separately.

41

Where CP is the crop population pr m2. As an
approximation the crop population has been set
to 400. This method of using CE to calculate
the reduction in yield for a given weed popula­
tion has been used earlier, for instance in a
herbicide selection system for winter wheat
(Cussans & Rolph 1990). The underlying
model is a Michaelis-Mentzen curve. With
small weed populations the curves are steeper
than with large populations. With several
species the effect is not additive.
The model is valid only at moderate weed
levels. Use of the crop equivalent system relies
on some assumptions which are very crude.
The system assumes:
• that the total biomass of a culture is constant

whether it is a clean culture or a mixture of
weeds and crop,

• that the harvest index is unchanged by weed
competition,

• in the formula used in this study a constant
crop population of 400/m2 is assumed.

These assumptions can all be questioned. Weed
competition from some species is probably not
by replacement. Total biomass yield varies
between clean and weedy crops and so does
the harvest index. Additionally the background
for the CE values is not too well established
for all weeds. At the moment, however, this
model is the best that can be achieved, but it is
a part where a better system can be derived by
research in a new model (chapter 4).
The last decision in this interview was the
strategy for the implementation. The dividing
into different sorts of problem classes made it
natural to work on one class at a time. So it
was decided to start with the direct control of
seed propagated weeds and then proceed with
crop rotation problems.

From now on the knowledge needed was
specific information regarding the part of the
system in the present study. This made it
possible to clear many questions via phone
calls, and for the experts to work on specific
parts at home.
The next interview was concentrated on the
direct control problems of seed propagated
weeds. The expert on seed propagated weeds
had the CE values ready. The missing part of
this problem class was to estimate effects of
different control methods on the weed popula­
tion and ultimately on the yield. The expert
was able to construct the frames for the two
methods harrowing and hoeing, a third method
- flame treatment - needed consultancy with !
another researcher and was postponed. The I
expert now had to gather information by exam­
ining trials to estimate the effect of the two
treatments on the weeds of importance chosen 1
earlier.
Two more interviews were carried out with
longer intervals. In the mean time the com­
munication was by mail and telephone. The
prototype was sent to the experts at intervals,
and was discussed by telephone. Adjustments
to the prototypes were proposed in the inter­
views also. Because the prototype system
became running, the experts really showed
excitement and eagerness to complete the
system.
The two modules for preventive control, the
crop rotation module and growing practice
module were made as simple as possible as a ;
start. These problem classes are only con­
sidered if the weed flora indicates problems,
and the modules are called only when indica­
tive weed species are present. The crop rota­
tion part checks the crop composition in the
rotation compared to heuristic rules about the
procentual amount of crop types that are

42

3 WEEDOF, a prototype o fa n expert system
allowed in a rotation. The growing practice
module so far only contains a warning of
problems, based on the indications of certain
weed species.
The last module commenced in this study was
the direct control o f root propagated weeds
module. The control of these weeds is different
from control of the seed-propagated weeds in
the methods used. They have to be controlled
outside the growth period by preventive pre­
cautions. By treating the soil regularly in the
autumn, when the crops have been harvested,
the growers try to diminish the population. The
soil treatment kills the weeds by cutting the
leaves and roots in bits and burying them
underground. The more often the soil is
treated, the better the effect on the weeds.
As this module is implemented now, it is
actually a cross between planning and diagnos­
ing . The reason for this is that the expert in
root propagated weeds was so used to give
advice in acute situations, that it was hard for
him to abstract from this. The result is a
planning module, which needs fresh counts of
weeds instead of expected counts as in the pure
planning part. If the project is to be continued
this module will have to be reviewed.
Now the module for direct control of seed-
propagated weeds, for crop rotation and part of
the direct control of root propagated weeds
was finished. The prototype was in a phase
where there was little new to leam of the
methods, and the hard work was in the pro­
gramming part. The work in this project had to
continue in another direction. This left the
cooperating researchers with a prototype and a
lot of good ideas for proceeding the work and
visions for the system.

3.5 The prototype, implementation
During the knowledge acquisition phase the
concepts and rules of the domain have been
collected. This phase is followed by a phase of
formalization of the knowledge. The final
representation of the knowledge should reveal
the patterns in the domain in a way consistent
with the chosen language.
In knowledge system building the tool is nor­
mally chosen, when the domain choice and
some initial knowledge acquisition has been
carried through, establishing the scope and
goal for the system. In this project the tool -
EGERIA - was chosen before the knowledge
acquisition took place. This was an early
choice based on cooperation and funding con­
siderations, making it impossible to take
special domain and system requirements into
consideration. Instead a hybrid shell was
selected with possibilities to produce several
different sorts of system. The shell has several
forms of knowledge representation, and is able
to do both backward and forward chaining.
By choosing EGERIA the notation for the lan­
guage to represent the knowledge, the seman­
tics, the procedural and declarative schemes,
the mechanisms for organizing knowledge and
the inference schemes were determined. Select­
ing a shell also means favouring the paradigm
the shell is built upon. A knowledge engineer­
ing tool reflects an AI viewpoint and a specific
methodology for building knowledge systems
and may for instance have a built in preference
for building systems with causal models as the
ground for solutions to diagnostic problems or
conversely reflect preference for using experts
empirical symptom-problem associations. This
does not mean it is impossible to use them
differently, only that this can create problems.
In the formalizing process the early choice of
a shell means that the facilities in the shell can

43

4

be the foundation of the representational
schemes used.

3.5.1 Representation
One of the results of the literature analysis was
the concept hierarchy. There are several ways
this structure could be represented. Semantic
networks or frames are two of the obvious
choices.
In their program for automatic construction of
small knowledge bases from texts Gomez and
Segami (1990) used semantic nets to represent
the knowledge.
EGERIA supports object oriented programming
(chapter 3.3.1), where concepts are repre­
sented as objects and object classes which are
frame like structures. Therefore an object
oriented approach was chosen.
Classes describe concepts, their connected
attributes and procedures for deriving values
for attributes. For every concept in the hier­
archy an object class is constructed. As a start
the class contains the attributes in the attributes
entry of the concept hierarchy which are
connected to the concept - the crop concept,
for instance, contains the crop attributes.
The hierarchical concept structure is repre­
sented in a corresponding hierarchical class
structure. Subclasses inherit properties, pro­
cedures and rules from super classes ie the
subclasses are specializations of the superclas­
ses. This corresponds to the relation ‘is-a’ for
a semantic network described in section 2.4.3.
For instance the concept plant could be repre­
sented by this class (in pseudo language):
CLASS plant

single speciestypes species
single I ifelengthtypes lifelength
single propagationtypes propagation
integer size

real CE
integer dry_matter minimum

END CLASS plant

Where speciestypes, lifelenghttypes and propa­
gationtypes are lists of possible string values
for the corresponding variable. Single means
that only a single value can be chosen for the
attribute value.
The crop concept could then be represented by
this
CLASS crop

inherits plant
string sort
single usagetypes used_as
single methodtypes method_of_cultivation

END CLASS crop

The ‘crop’ class inherits the attributes from the
‘plant’ class (and everything else in the class).
Besides it has the attributes sort, used_as and
method_of_cultivation.
Besides these attributes the classes contain
rules and procedures to calculate the value of
attributes. For instance the class ‘crop’ con­
tains rules to find out if the crop is a winter
crop:
CONDITION wintercrop IS species IN Cwinter-
rye, uinterwheat, winterbarley}

These examples are based on the material from
the literature analysis. The knowledge elicited
in the analysis contained partly knowledge on
control of weeds and partly knowledge about
the biological relations in a field. The last part
could be used to form a model of the biologi­
cal system as a basis for a model based expert
system - if it was complete. Unfortunately it
was not and the system was therefore built as
a heuristic expert system. Later work com­
menced on a model which could be the kernel
of a model based system (chapter 4).

44

3 WEEDOF, a prototype o f an expert system
The concepts from the analysis have been
included in the system when needed. Some of
the concepts were not needed, or have not yet
been used. There are several reasons for this
• First, the concept can be irrelevant when

talking about weed control, as for instance
the climate. It has influence on the growth
of weeds and crop, and on the effect of
some of the control methods. But as the cli­
mate cannot be controlled, the effect of it is
included implicit as part of a variance on
the effects of control methods.

• Secondly, some concepts are not considered
when choosing control methods for a weed
population. For instance weeds are always
controlled when emerged, no control
method is directly aimed at killing seeds.
The seeds are important in the biological
system, but are only considered implicit in
weed control. For instance by trying to
prevent weeds from producing seeds.

• Finally, some concepts have not been
included because the system is not finished
yet. Examples are sowing and soil prepara­
tion. Using suitable methods here has a pre­
ventive effect on weeds. Unsuitable methods
may create weed problems in crops, where
those weeds are normally of minimal impor­
tance.

The concepts included in the prototype are now
weed, crop, soil, weed control, split in the two
types for seed-propagated and root-propagated
weeds, crop rotation and abnormal occurring
weeds (fig. 3.5).
Some of the attributes from the analysis are not
relevant in the system. For instance methods of
cultivation are normally of relevance in the
choice of control methods - row cleaning is
only possible in row cultures. In the system it
is irrelevant because in a planning situation the
cultivation method can be changed if the

change gives opportunity to use better control
methods.
The interviews also showed that attributes and
concepts may be irrelevant for other reasons.
The information needed for crop and weeds in
a system for control is different subparts of the
plant attributes. For instance all plants have a
dry matter minimum - the stage of growth
where the dry matter content is at a minimum.
When we are talking about weed control, the
attribute is only used in the control of root
propagated weeds on bare land. They should
be cut at the dry matter minimum, when there
are minimum reserves to start new growth.
The attribute are of no relevance in the crop.
Ultimately all the attributes for a plant could
be divided in three parts: Those irrelevant,
those relevant for crops and those relevant for
weeds. The hierarchical structure could have
been retained, because it provided an excellent
connection to the natural model of the domain.
For efficiency reasons the plant class was
removed and the attributes removed or moved
to the relevant subclass.

3.5.2 Inference and control
Because a shell was chosen for the develop­
ment of the prototype the inference engine and
the way of inferring new knowledge was given
beforehand. The course of the session could be
controlled by active elements in the program.
The overall control in WEEDOF is performed
by two classes - a main and a dialogue class.
Instantiations - objects - of these classes per­
form the control necessary to reach the goals
of the system. The main object successively
starts a session, by creating a dialoque object,
and clears all values from memory until the
user chooses to stop. The dialogue object
creates the relevant domain objects in a fixed
sequence.

45

4 *

The basic feature in EGERIA is forward
chaining, and this is also true for WEEDOF.
The goal is to produce a list of possible plans
for weed control from many different combina­
tions and this is done in a rather procedural

way. In parts of the program backward chain­
ing has been used especially in collecting
values for attributes in the objects. There are
two reasons to use backward chaining here.
Firstly, it is often easier to assign values by

pMain co n tro l)

(Dialogue control)

(Abnormal w eed)

(fcheck probability)

Figure 3.5 Objects in WEEDOF and their relations.

46

3 WEEDOF, a prototype o f an expert system
telling the variable where a value should be
used and leave it to the system to find the
variable values which are prerequisites. Se­
condly for explain reasons - refer to the section
3.5.3.
In the interviews a decision was taken that all
possible solutions to problems should be given.
So the inference engine has to search for all
solutions not only the best. This means that
solutions do not have to be compared for
effectivity.

Heuristic match
Data abstractions ==> Solution abstractions

Data abstraction Refinement

Data Solutions

Figure 3.6 Heuristic classification from Clan-
cey 1985.

The problem solving follows the problem
solving strategy from the expert. After collect­
ing the initial information - the data - the prob­
lem is classified in one of the problem cat­
egories. This is parallel to Clanceys (1985)
data abstraction in heuristic classification (fig.
3.6). These categories corresponds to different
control possibilities which is then explored
further. This corresponding is equivalent to
Clanceys heuristic match. So the problem
solving being used can be referred to as heuris­
tic classification. The match deviates in the
direct control classes from Clancey’s match in
that the match directly gives the possible
solutions and the remaining task is to calculate
a measure of the effectivity of the control ac­
tions.

3.5.3 Explanations
An important part of an expert system is the
explain facility. EGERIA has a built in explain
facility. The WHY statement retraces the most
current line of backward chaining and executes
any EXPLAIN clauses attached to variables on
that path. Of course this facility should be used
in explaining the results in WEEDOF. This
proved to be of very limited use. As mentioned
earlier the basic overall feature in WEEDOF is
forward chaining. In parts backward chaining
has been used for assigning attribute values. It
quickly showed up that most lines of backward
reasoning in WEEDOF were only one step and
then the explanations goes also one step back.
Without changing the structure the reasoning
was changed to backward chaining where ever
it was possible. This changed very little in the
performance of the explanations - there are too
many shifts to forward chaining for the explain
mechanism of EGERIA to be of any use in a
program like WEEDOF.

3.6 From prototype to final system
WEEDOF has not been finished. It is still in a
state of prototype. In virtually all parts of the
program knowledge is missing.
The module for direct control of seed propa­
gated weeds are the one which have been
elaborated the most. It is containing knowledge
on the subjects hoeing and harrowing. Where
as knowledge acquisition and formalization on
the field of flame treatment initially was post­
poned and never was done. This type of direct
control of course should be included.
In the module for root propagated weeds only
knowledge about couch grass (Elymus repens)
has been included in the present prototype, of
course the rest of the root propagated weeds
treated in the prototype should be included.

47

The module furthermore departs from the rest
in showing more of a diagnostic character than
of a planning one. Maybe this is indeed the
only way to handle the problems of root propa­
gated weeds. The problem has to be reviewed
if the prototype shall be finished. A total
finished system will demand a coherent presen­
tation.
The ‘abnormal weeds’ module is the part in the
most preliminary state. For the moment it only
warns about problems if there are weeds that
‘should not be there’. The intension with this
module is to include reasoning about growing
practice problems. The knowledge has not
been acquisited and formalized in the project.
The field includes several reasons for problems
for instance sowing bed preparation or missing
cleaning in row crops, so the acquisition of
knowledge for this module could take time.
The last ‘problem solving’ module - crop rota­
tion - could need a more thorough analysis of
the crop rotation. For the moment it resides on
heuristic rules saying that if certain weeds are
present certain kinds of crop rotation problems
could be the reason. This of course only
covers the experiences when people stick to
known crop rotations. If growers departs
greatly from these, for instance if they start to
grow a single crop for a big part of the rotati­
on, this would demand for the system to pos­
sess deep knowledge to deduce the reasons.
These were all extensions needed in the mod­
ules. To finish the system some work also have
to be put into a more user-friendly interface.
All of the modules uses a reasoning based on
heuristics. As will be mentioned in chapter 4 it
could be possible to improve on the explana­
tions by using a model based reasoning. This
of course is a totally new concept which means

throwing the prototype out and beginning a
new.
One appropriate way of finishing the prototype
system would be to leave the prototype to
professional programmers in a company with
experience of decision aid systems, and let the
programmers finish the knowledge acquisition,
reprogram and finish the system. Now that the
basis is ready this could be done in an ordinary
programming language.
Before the system can be considered finished a
test is necessary. So far the prototype has only
been tested by the knowledge engineer and the
experts. A thorough test will imply testing the
system on real application problems at users,
as well as testing it on other experts.

3.7 Summary and conclusion
For the development in this project an expert
system shell - EGERIA - was chosen, partly to
experience such a tool, partly to speed up the
development. EGERIA has several weaknes­
ses. As an expert system building tool EGE­
RIA should support generation of explanations.
EGERIA’s explain system only works in
systems which uses backward chaining all the
time. Systems with forward chaining or shifts
between backward and forward chaining cannot
use the automatic generated explanations.
Furthermore EGERIA has deficiencies in the
compiler, it lacks a trace facility to use in the
debugging, and the language is complex with
a difficult syntax. On the other hand the tool is
very sophisticated and also provide features
which speeds up programming, for instance
easy windows’ definition, easy way of initiat­
ing backward and forward chaining and
advanced ways of representing knowledge.

48

3 WEEDOF, a prototype o f an expert system
The start on the knowledge acquisition process
in this project differed from other expert
system development projects. The use of
written sources in a systematic way had not
been common earlier. Now researchers have
realized that a preliminary knowledge analysis
and domain characterization will facilitate the
development of knowledge bases (Nwana et al
1991). Texts could be one knowledge source to
this domain characterization.
Gomez and Segami (1990) describe a program
with a model for comprehending scientific texts
used for automatic construction of small know­
ledge bases from text. This model also uses the
idea of building concept hierarchies and con­
cept structures from the logical form of the
sentences, using a parser to parse the sentences
identifying concepts and relations. Their model
apparently goes one step further than this
approach and represents the concept graphs
directly in the knowledge base.
The use of written material as an initial source
of knowledge proved to be a good start on the
knowledge acquisition process. In this project
the knowledge engineer had superficial domain
expertise. It seems though that domain expert­
ise is not necessary to make the literature
analysis: In a text from a domain anyone is
capable of recognizing special uncommon
words likely to be part of and characteristic for
the domain, ie the first central part of the
literature analysis. The rest of the analysis is a
way of reformulating the knowledge in a short
and concise manner, and extracting the con­
cepts in the domain, making the concept hier­
archy.

The analysis provided a concept hierarchy
which showed up to be very complete and
useful in the end. It also provided knowledge
on relations in the domain, in the form of
notes. The collection of notes can be viewed as

models of the domain. The hope was originally
to include these models directly in the expert
system and to use these to simulate effects of
actions on the state of the biological system,
using these simulations to give advice on the
best actions to take. The models derived were
unfortunately not complete enough to be direct­
ly included in the prototype. The relations on
the effects of control methods on the biological
system needed completion. Instead a basis was
made for an easier perception for the knowl­
edge engineer of the knowledge delivered from
the experts in the following phase of interview­
ing.
Two factors seem to be of great importance in
the outcome of the literature analysis:
• The type of the domain with respect to the

kind of knowledge about it. Domains with a
deep and thorough understanding of the
processes happening to the concepts are
much easier to describe, and will give better
and more complete models in the analysis,
than domains where knowledge about causal
relations is poor. So very technical domains
will be described to a better degree, and
may leave the knowledge needed from the
expert to be search strategies.

• The quality of the textbook available. If the
text gives a thorough reading of the domain,
the results are likely to be much better and
more detailed than a text which is an intro­
duction to the domain as in this case.

Even when the results are less optimal the
analysis can be a great help in providing the
concept hierarchy and an understanding of the
domain ahead of interviews.
Another part where the procedures in this
knowledge acquisition process differed was in
the use of two experts. The reason for having
two experts to cooperate in the work was in
this case simple interest from the researchers

49

side. This interest of course also made the
work easier, both were very motivated to do a
good job and create a system. Experts
are able to question each other much more
thoroughly than a knowledge engineer would
be able to, thus freeing him to listen to the
discussions and to control the interview.
The literature analysis has made it possible to
structure the interviews providing a systematic
way of constructing a knowledge based system
in a top-down way, specifying the problem
solving strategies early in the knowledge
acquisition phase. The analysis has also
reduced the time needed from the experts.
The concept hierarchy from the literature
analysis can be represented using different
structures. As EGERIA - with an object
oriented representation - was chosen as the
programming tool, objects were chosen to
represent the concepts. Many of the concepts
from the literature analysis has not been repre­
sented in the prototype. Concepts have been
removed either because they were unnecessary
or because the attributes could be moved to
make the prototype more efficient. Consequ­
ently the prototype class hierarchy is flat
compared to the whole hierarchy from the
analysis.
The programming started by representing some
of the immediately useful concepts in the
language, this was the weed and crop concepts,
and the associated methods for collecting initial
informations. Also the overall session control
was programmed early. Early in the interviews
it was decided to start the development with
the direct control of seed-propagated weeds,
and that the development would proceed with
the problem classes direct control of root-
propagated weeds, crop rotation problems and
abnormal occurring weeds. Because all poss­
ible solutions should be given there was no

need to compare solutions. The program
executes all modules which are relevant with a
set of initial information of weeds and crop.
The prototype follow a problem solving strat­
egy - heuristic classification - described by
Clancey (1985). The initial information is
matched to four problem categories. These
categories corresponds to the different control
possibilities which are then explored further.
Eventually each of the control possibilities can
contribute with advice, if the initial information
matches to all the problem categories.
The program is still a prototype. Several things
are missing before it can be called a finished
system. Some of these are knowledge parts,
for instance knowledge about flame treatment,
others are system parts of which one important
from an expert system point of view is the
generation of explanations, another is a good
user interface. One way the system could be
finished is to leave the prototype to experi­
enced programmers who could reprogram and
finish the system - maybe in an ordinary pro­
gramming language.

50

4 A model based system
In connection with expert systems one
distinguishes between deep and surface
knowledge.
Deep knowledge makes explicit the models of
a domain and the inference calculus that
operates over these models. A domain model
for diagnosis could be a causal model linking
properties of components through cause-effect
relations. Surface knowledge contains selected
portions of the deep knowledge, in particular
those portions that are relevant for the class of
problems that are likely to be encountered. It
also contains additional heuristics and optimiza­
tions, for example decisions based on the most
probable situation.
Traditional (first generation) expert systems
only code the surface knowledge. They contain
just enough knowledge to make the required
inferences, but none of the underlying domain
knowledge (deep knowledge), such as causal
relations between symptoms and causes. The
fact that only surface knowledge is represented
explains why traditional expert systems are
efficient and effective in problem solving.
However, because first-generation expert
systems only code surface knowledge, they
have important drawbacks, such as brittleness
and weak explanations. Model based expert
systems or second generation systems intend to
overcome these limitations by including deep
knowledge.
Model based expert systems contains two
components: One implements the deep knowl­
edge of the domain, that is, the domain model,
the other implements the surface knowledge
(Jones et al 1989). Although deep problem
solving is, in principle, less efficient, it
typically covers a wider class of problem.
Model based expert systems are therefore less
brittle.

Because deep knowledge is supposed to be less
biased towards use, it is hoped that knowledge
becomes, to some extent, reusable. For
example the same causal network can be used
in both design and diagnosis.
Deep knowledge can be the source of better
explanations. The explanations given by first
generation expert systems are somewhat unsat­
isfactory because they are a simple replay of
the rules that are used to arrive at a con­
clusion. With deep knowledge in the system,
the domain knowledge that went into an infer­
ence step can be reported making richer expla­
nations and justifications.
The prototype expert system constructed in this
project can be characterized as a first gener­
ation expert system. When the literature analy­
sis started it was hoped that the deep knowl­
edge elicited could be included in the knowl­
edge base. Unfortunately knowledge was
missing in the models from the literature analy­
sis. When the work on the prototype stopped
it was decided to work on a domain model.
The model should be able to simulate growth
of crop and weeds on a field and the effect of
control actions. This model could be the basis
of a new prototype where the model is used to
simulate actions and predict effects, short-term
as well as long-term, on the development of
weeds and crop and the seed content in the
soil.
In this system the model furthermore should be
used to generate better causal explanations to
the user, by replaying the deep knowledge that
was used.
The model is not finished yet. The specifica­
tion has set the framework of the model, but

51

the specific functions which represents the
subpart of the model are still missing.
This chapter will outline the work done on the
model and discuss the possible way of using it
in a model based expert system. Section 4.1
shortly discusses existing work on plant popu­
lation models. Section 4.2 introduces the
specification language. The model has been
specified using a formal method not previously
used for agricultural modelling. The language
used is META IV - an edp specification lan­
guage. Section 4.3 presents a survey of the
model structure, while section 4.4 describes
the component functions. Section 4.5 presents
a possible way of using the model in a
planning system for weed control. At last
section 4.6 presents the summary and con­
clusions.

4.1 Plant population models
Work on plant population models is not un­
common among agricultural researchers.
Mechanistic models have in particular been
used to model all parts of biological systems.
Most models narrow the task by concentrating
on one species (Doyle et al 1986, Moss 1985,
Moss 1990), on parts of population models
(Barralis et al 1988, Zwerger & Hurle 1986,
Zwerger & Hurle 1989, Moss 1983, Cousens
& Moss 1990), others narrow the task by
omitting for instance competition and diseases,
such as the Dutch model SUCROS87 of the
potential growth of a crop in disease and weed
free environments under the prevailing weather
conditions (Spitters et al 1989), and the Danish
model DAISY for simulation of crop produc­
tion, soil water dynamics, and nitrogen
dynamics (Hansen et al 1990).
All these mechanistic models are too limited in
scope to be of use in a model based expert sys­

tem for planning weed control. We need a gen­
eral plant population model. General in the
sense that it should be applicable to all plants.
Furthermore the model should take competition
between species into account. A model of the
kind an expert uses when explaining the effects
of different kinds of action on the population.
Empirical models often give results closer to
reality than mechanistic models. But the use of
an empirical model is ruled out because the
model is intended to be used in explanations.
Empirical models do not contain the causal
relations which are needed when explaining
results.
The model should simulate the development of
the population on a field. The input to the
model is the flora, weeds and crop, the counts
of plants per squaremeter, the actions per­
formed on the field and the time period. The
output is the consequential growth, counts of
plants, seed shedding, germination of plants
and seed content in the soil at the end of the
period. Because the purpose of the model is to
predict events, it will be adequate to consider
the situation under standard conditions, and not
include for instance climatic parameters.
If the goal is a model that gives a good de­
scription of reality, such a general model is
very difficult to construct. As earlier described
one of the primary goals for the modelling for
expert systems is to make better explanations
of the causal relations. The predictive ability of
such mechanistic models does not always live
up to expectations, however, a poorer descrip­
tion may be accepted in exchange for a simple,
easy to understand model.

A population model can be constructed at
different levels. For instance the plant growth
can be explained as a simple curve relating to
time and time of emergence. Or it can be
explained on the basis of the underlying pro­

52

4 A Model based system
cesses, such as photosynthesis and respiration,
and how these processes are influenced by
environmental conditions. Building a model
based expert system does not automatically
imply choosing just one model, and using this
for both simulation and explanations. A system
can encompass several models. The models can
be series of refinements, where the finest
model are the one used for the simulations and
the rest are simplifications making it possible
to explain on different levels of difficulty.

4.2 Specification language

input and output parameters is declared. The
overall function is then broken into
subfunctions by degradating the top function in
sub functions. The degradation continues until
easily described functions are obtained. This
degradation amounts to dividing the model in
submodels each describing a separate part of
the total system.
Functions are described by a head declaring
input and output domains, and a definition part
describing the function algorithmically. It is the
definition parts which is lacking in the current
work.

The model is specified in appendix 5 using
META IV (Rischel 1987). META IV is a
system specification language, which is used in
The Vienna Development Method (VDM). The
specification is performed top-down. The
system to be specified is described by an
overall top function. The inputs and outputs to
the top function are specified, and each of the

4.3 Model structure
The general yearly cyclus of plant growth is in
short (fig. 4.1): Seeds in the soil seedbank
germinate to small plants. A number of the
small plants die. The rest grow to be mature
plants. During growth an eventual vegetative

Loss

Figure 4.1 Yearly cyclus o f a plant.

53

^^imulatePlantip ^imulateActior^)

^^iinulatePlant}^ ^5ffec tO nP lan ts) ^ffectOnSoilSeeci)

^erminatio)̂

' f —-T—z—-* ^ ----------N C Seed death?) ^ S e e d supply)^Seed county/?lantcounh V ✓
^ jd ju s tm e ^ ^ d ju s t^ j

^ e e ^ ro d u ctio ^)

-,;jJ,------^ ^ActionDeveloj) ____________
5eed contery ^^fovementT^

^ActionHeighT)

C Treal)
Figure 4.2 Functions in the present model structure. The top function farming has as sub
functions the functions simulatePlant and simulateActions and so on.

reproduction also occurs. Competition between
plants influences the growth. The mature plants
bloom and sets seeds. Of the seeds some die or
disappear for different reasons. The rest are
incorporated in the soil surface. Seeds in the
soil are spread in the soil profile. Only seeds
in the top 5 cm can emerge. The rest is dor­
mant. Actions performed on the field such as
ploughing or harrowing influence the stages in
the system. This is the general system we
would like to model.
Fig. 4.2 is a schematic outline of the connec­
tions between functions. The boxes indicate
functions. The overall top function in the
model is called farming. Farming encompasses
the whole system. The arrow indicates that the
function at the end of the arrow calls the
function at the beginning. Farming then calls
the functions simulatePlants and simulateActi­
ons. SimulatePlants calls one function simula­

tePlant and so on.

4.4 Functions in model
In the META IV specification the functions are
first described by the domains for the input and
output variables - the valuespaces. Table 4.3 is
a list of domains for variables in the functions.
Generally all the functions operate on the state
of the system. The state is a compound vari-
abletype consisting of a seed situation and a
p lan t situation. The state or part of the state are
changed by the functions to picture the changes
during time or caused by actions.
The p lan t situation is specified (table 4.3) as a
function of species (species) to a series of
developmental stages (population _D evelo pm ent).

Population_Developm ent is specified as a func­
tion from the developmental stage (develop

54

Table 4.3 Domains (datatypes) fo r the variables in the model, j = separate possibilities fo r
variable values, X = compound values, -» = picture and {}' around values = list o f values.

4 A Model based system

Domain Definition
Year INTEGER.
Month INTEGER.
Day INTEGER.
Time year X month x day.
Height INTEGER X ‘cm'.
Depth ‘> 5 cm’ 1 ‘<5 cm’.
Species ‘Winterrye’ | ‘Winterbarley’ | 'Winterwheat’ \ 'Rye' \ ‘Bar­

ley ’ \ ‘Wheat ’ 1 ’ 1 ‘Forget-me-not ’ \ ‘Chickweed com­
mon ’1.........

Soiltype ‘Hard clay’ j ‘Clay’ | ‘Sandy loam’ | ‘Sand’ \ ‘Humus’.
Stones ‘Few stones ’ | ‘Many stones ’.
Fieldlnformation soiltype X stones.
Developmental stage ‘Germ ’ \ ‘Flowering ’ \ ‘Seed bearing ’.
Count INTEGER.
Germinated plants INTEGER.
Actions ‘Sowing ’ j ‘Harrowing ' \ ‘Hoeing ' j ‘Flame treatment ’ j

‘Plowing ’ 1 ‘Stubble treatment ’ \ ‘Harvest ’ .

Actionlist {action X time}*.
SeedContent depth -* count.
Heighttable height -» count.
PopulationDevelopment developmental Stage -* heighttable.
Seed situation species -* seedContent.
Plant situation species -» population Development.
State seed situation X plant situation.

55

m en ta l stage) onto heighttable, for each develop­
mental stage then there can be several different
heights. The domain heighttable pictures each
height (heigh t, which is an INTEGER with a
‘cm’after) onto a count (count - IN TEG ER). This
count is then the count of plants of the actual
height of the actual developmental stage of the
species. For some species this seems very
complicated. The crop, for instance, will
probably be uniform, all the plants having the
same developmental stage and height. Some of
the weeds though will germinate for longer
periods and can therefore be present in differ­
ent sizes and developmental stages. H eight from
the table heighttable could be given in larger
intervals than 1 cm for instance the heights
could be given in 0-5 cm, 5-10 cm and so on.
S eed situation is a function of species to the
seed content table (seedContent). SeedContent-

pictures depth (depth), which is either ‘ < 5cm’
or ‘ > 5 cm’ onto count (countI of seeds in the
depth. The two depths are chosen because the
seeds which germinate often come from the top
5 cm.
Now the functions in the model will be exam­
ined. For each function the input, output and
the intended content in the function will be
described. Sometimes the domains for the
variables are mentioned, in that case they are
written as dom ain, sometimes they are not. In
all cases the variables are named according to
their domain type - a variable named popula-
tionDevelopment are consequently of the type
population_Developm ent. Often a function has
two input variables of the same type, then the
variables have additional descriptions to clarify
the difference, for example start time and stop
time. The domains and the functions are spec­
ified in the META IV specification appendix 5.

Farming
Farming is the top function (appendix 5). The
inputs are the start state (s ta te), information
about the field fieldlnform ation, time for start of
simulation and a list of planned actions with
connected times (actionlis t). The output is the
final state at the end of the simulation period,
which is the time of the last action, and the
stop time.
Farming performs the simulation of the sys­
tem. This simulation consists partly o f a simu­
lation of the plants and seeds on the field -
growth, development, seed shedding, changes
in soil seed content in the simulation time,
partly of a simulation of the effect of actions.
Farming is specified as a recursive function
which calls the subfunctionssimulatePlants and
simulateActions. For each time of action in the
list, farming simulates the development in the
field from the last state: First the function
simulatePlants performs a simulation for each
species in the population. Then simulateActions
simulates the effect of the action. At last
farming calls itself to simulate the period to the
next action.
SimulatePlants
SimulatePlants performs the simulation by
calling the function simulatePlant for each
species in the population.
SimulatePlant
SimulatePlant will call the four functions
germination, vegetativeReproduction, growth,
and soilSeedContent in that order. Competition
between species must be included in some of
these subfunctions.
Germination
Germination has the input variables species,
state, field information, time for start and time
for stop. The output is seedContent in soil after

56

4 A Model based system
germination and the new plant situation (popula-

tion_Developm ent) for the species.
The function uses two help functions - seed-
CountAdjustment and plantCountAdjustment to
calculate the change in the seed situation and
plant situation.
VegetativeReproduction
VegetativeReproduction has the input variables
species, the original or start value of popula-
tion_Development, the popuIationDevelop-
ment after germination, the start and stop time
and possibly also fieldlnformation. The output
will be an updated populationDevelopment
table for the species.
The function to implement shall calculate the
new count of plants of the species after veg­
etative reproduction in the period from start to
stop time. The vegetative reproduction will of
course depend on the species. But also on the
crop, and possibly the other weeds present.
Growth
Growth has the input variables species, plant
situation, fieldlnformation and time of start and
stop of simulation. The output will consist in a
new plant situation. The function is a growth
curve. For the moment the function to include
has not been specified.
Natural functions to describe the growth could
be either the cumulative normal distribution or
the logistic equation. The logistic equation has
been applied in many biological areas. It was
first proposed by a Belgian mathematician for
describing the cumulative growth of popula­
tions.
The logistic curve describes the population or
individual growth under normal limitations in
space and food. In integrated form the equation

relating yield (y) and time (/) may be written
as

1 +e ~(a*bl)

where e is the base of the natural logarithm, a
and b are constants and y0 is the upper
asymptote. We assume that y0 and y are mea­
sured from a known lower asymptote as zero.
The response y then plots against t as a sym­
metrical sigmoid curve (fig. 4.4). According to
species the parameters a, b and y0 will change
resulting in different maximum value and slope

Y

T

Figure 4.4 Logistic curve fo r description o f
growth.

of the curve. The function can then be cali­
brated with the actual start values in plant
situation.
Influence of competition on the growth should
be built into the growth function. How to do
this is complicated. Most investigations on
effect of competition on the crop has concen­
trated on depression in yield at a given weed

57

infestation at a given moment. (Wilson 1986,
Wilson & Wright 1990). Investigations of
competition uses weed dry weight as an indica­
tor for competitiveness, often in the form of
crop equivalents (as used in WEEDOF). A
high dry weight compared to the total dry
weight of the field indicates a high competitive
effect. Investigations of the competitive effects
during the growing season (Courtney & John­
son 1988, Wilson & Wright 1990) have shown
that the crop equivalents change throughout the
development of the crop. The average of the
crop equivalents can often be used as an indi­
cator of competitive effects on the yield, but
sometimes the plant weight in a special time of
the growing season has a better correlation
(Wilson & Wright 1990).
The competition from weeds also has an effect
on the harvest index - the grain/straw part of
the yield. The harvest index falls as the count
of weeds rises (Wilson & Wright 1990).
There has not been much research on the
influence of competition on the growth of the
crop and weed before harvest. Conolly et al
1990 and Håkanson 1991 has performed some
research of the competition in the time-course
of the growing season. They too are interested
in the biomass production at harvest. Instead of
static models correlating the observations to
one single final harvest, Conolly et al 1990
harvested the plants several times during the
season. Then they could study the development
in growth periods during the growing season
and the correlation to the final yield. Conolly
et al (1990) showed that species interactions
varies during time, and with the way they are
mixed. Their results also suggests that the
effect of earlier germination on the interaction
is considerably greater than the species com­
petitive ability. Håkanson 1991 concluded that
biomass assessment of a weed at some time

during the growing season is not a sufficient
basis for predicting yield reductions.
How to incorporate this information in a func­
tion is difficult. The reason for the change in
harvest index could be a reduced ability to pro­
duce seeds due to a reduced size, or a slower
development because of competition (fig 4.5).
So more investigations are needed to explain
the effects of competition on growth.
SoilSeedContent
SoilSeedContent is the last help function used
by simulatePlant. The function has the input
variables species, the original state, the value
of seedContent after germination, start time
and stop time and possibly fieldlnformation. It
will return an updated seedContent table.
SoilSeedContent uses the two help functions
seedDeath and seedSupply to calculate the seed
content in soil at the end of the period.
SeedCountAdjustment
SeedCountAdjustment has the input parameters
species, seed content in soil for the species
seedC ontent , start and stop time, and possibly
fieldlnformation. The function will return an
updated seedContent table for the species and
the number of germinated plants (germ in a ted

p lan ts). Seed content in soil for the species is a
table which has depth (depth) as key and count
(coun t) as value. For each depth in the table
the helpfunction treat will calculate the germi­
nation and return the new count and the num­
ber of germinated plants. A new seedC o nten t

table is constructed with the results for each
depth, and the sum of this and the count of
germinated plants is calculated.
Treat
Treat has the input parameters species, depth,
seedContent and stop time and possibly field­
lnformation. The output is the new seedCon-

58

4 A Model based system

T T

Figure 4.5 Two possible effects o f competition on the growth. In a) competition affects the
asymptote ie the maximum yield. In b) the slope or growth rate is affected.

tent and the count o f germinated plants.
The function uses a table of normal germina­
tion, where species, depth and time of the year
are pictured on a normal germination fraction.
The count of seeds in the depth is multiplied
with the germination fraction. The new count
in soil - after the germination part of the seeds
has been subtracted - , and the germination
part is returned.
The table this function uses may be difficult to
construct. The yearly germination of different
species are often known, as is the germination
curve over the year. But here we need infor­
mation on the germination for the top and
bottom layer in soil, not the soil in general. A
possible approximation is to assume that all
germination is from the top layer.
PlantCountAdjustment
PlantCountAdjustment has as input variables
species, population_Development and the
count of germinated plant from the function

seedCountAdjustment. The output is a new
population development table for the species.
The function shall put the newly germinated
plants into the population development table.
The table is a picture of the developmental
stage to a new table picturing height into
count. The new germinated plants are to be put
in the table with the developmental stage
‘germ’ as a key. If ’germ’ is not a key in the
table then a new key should be made and the
table value pictures the normal height of germs
of the species to the count of germ plants. If
‘germ’ is already a key in the table then the
count, which is the table value of the normal
germ height for the species, should be
increased with the count of germinated plants.
The normal germ height is looked up in a table
where species is pictured into height.
SeedDeath
SeedDeath has the input parameters species,
seed content in soil for the species at the start
of the simulation period, seed content after
germination in the simulation period, the start

59
5

and stop time, and possibly fieldlnform ation.

Output is the updated seed content table.
The function uses a table of the normal seed
mortality for the species and time of year,
which is assumed here to be independent of
depth. The data for this table could be difficult
to obtain. It is known that annual species have
a higher mortality rate than perennial. But the
mortality of seeds in the soil also depends on
the soil and the conditions for the seeds. There
are examples of seeds surviving extremely long
periods of burial under exceptional conditions.
The function calculates the count of dead seeds
by multiplying the normal mortality rate with
the initial count of seeds, and produces a new
seed content table by subtracting this number
from the seed content after germination.
SeedSupply
SeedSupply has the input parameters species,
populationdevelopment, seedContent, start and
stop time. The output is an updated seedC ontent

table.
The function shall calculate the new seed
content after seed production from the plants
on the field. The help function seedProduction
calculates the production of seeds. The sum of
the seed production and the count of seeds in
the top layer of the soil is calculated as the
new soil seed content in the top layer. There is
two problems here to deal with: firstly, a part
of the total production dies or disappears
before being incorporated in the soil due to
wind or predators. This can be solved two
ways: Either the seed production function
should calculate a seed production which is
smaller than reality to account for the missing
seeds. Or a part of the seed production should
be subtracted before calculating the new
amount in soil. Secondly, a similar problem
exists with the crop, only that here most of the

seeds disappears - they are harvested - before
incorporation in the soil. The last solution,
subtracting a part of the seed production before
calculating the new amount is the best solution
here, in that way an estimate of the harvest is
found at the same time.
SeedProduction
SeedProduction has the input parameters spe­
cies, populationDevelopment and start and stop
time. The output is the count count of produced
seeds.
The function uses a table which pictures spe­
cies and height on a count. This table relies on
the assumption that the competition affects the
height. Then the height could indicate the
potential seed production for the species taking
competition implicitly into account. The data
for the table is probably not available. The as­
sumption also may be wrong or the correlation
poor between height and seed production. This
question needs further investigation. In a model
for the effect of cultivation on the vertical
distribution of weed seeds in soil, Cousens and
Moss (1990) used a different approach. They
used a figure for seed production under no
intra-specific competition, and then modified
with a parameter for density dependent seed
production. Intuitively the other approach is
better because the relation between the compe­
tition and the reduced seed amount due to
influence on development is explicitly stated.
SimulateAction
SimulateAction is the function which simulates
the effect of actions on the seeds and plants.
The function has the input parameters state, a
list of the present species, fieldlinformation
and time of the action. The output is a new
state. The function uses the two help functions
effectOnSoilSeeds and effectOnPlants.

60

4 A Model based system
EffectOnSoilSeeds
EffectOnSoilSeeds describes what has happend
to the seeds in the soil after performing an
action such as harrowing. Input parameters are
seed situation, fieldlnformation, a list of pres­
ent species, action and time of action. The
output is a new seed situation.
We assume that an action only influences the
seeds position in the soil. An action will move
a portion of the seeds downward from the
upper layer, and a portion upward from the
lower layer. The help function movement
calculates the up and downward movements,
and returns the variables UP and DOWN to
EffectOnSoilSeeds. In the upper layer then the
number of seeds moving down (DOWN) is
subtracted from the original seed content and
the number of seeds moving up (UP) from the
lower soil layer is added. In the lower layer
UP is subtracted and DOWN is added.
Movement
Movement calculates the count of seeds moved
upward and downward. The input parameters
are seedContent and action. Maybe species has
to be included if the movement depends on for
instance the seed size. At moment it is
assumed that the fraction of seeds to be moved
are independent of species. This assumption is
not always valid. It is valid for plowing, but
apparently not for rigid tine cultivation (Cou-
sens & Moss 1990).
The function uses a table which pictures action
and depth onto a fraction of seeds which are
moved when performing the action. The seed
content in a depth is multiplied by the fraction
which is moved. Down is the movement from
the upper layer down, up is the movement
from the lower layer. The calculation is quite
simple here as there are only two layers.
Cousens and Moss (1990) modelled the dis­

tribution in a model with 4 soil layers. Their
approach is very similar to the one used here.
EffectOnPlants
EffectOnPlants calculates the effect on the
plants from performing the action. Input para­
meters are plant situation, fieldlnformation, a
list of present species, action and time of
action. The output is a new value of plant si­
tuation.
For every species in the list of present species
the help function actionDevelop produces a
new population development table which is
added to the old one.
ActionDevelop
ActionDevelop has as input parameters species,
populationDevelopment, action and time, and
possibly fieldlnformation. Output is a new
table of populationDevelopment.
For all the developmental stages which are
keys in the population development table the
help function actionHeight produces a new
value of heighttable, which is added to the old
one, and thereby replaces old values with new.
ActionHeight
ActionHeight has the input parameters species,
heighttable, action, time and possibly fieldln­
formation. The output is a new value of height­
table.
To look up the effect of the actions in terms of
the fraction which survives the action a table is
used. The table pictures species, height of
species and action on the fraction of plants
which are alive after the procedure. For all the
developmental stages and heights of the species
at the time of action the count is multiplied
with the fraction from the table. The new
count for the height is then included in the
height table.

61

5 *

The fractions left after performing an action
are not so straight forward to predict as this
solution states. The effect of harrowing a field
for instance is very dependent on the weather
after the harrowing. If the weather is moist
after harrowing more plants will survive than
in dry weather. The present model does not
consider weather conditions so a standard
figure must be used. The question is then
whether this should be the minimum survival,
a medium count or possibly an interval. In
WEEDOF an interval is used to calculate the
effect from the worst to the best case.

4.5 The model as part of a model
based system
The model described is to be used in a
planning expert system to simulate the growth
and development of crop and weeds, the seed
content in soil and the effect of control actions,
and explain the conclusions. The model simu­
lates the whole plant and seed situation on the
field and can cope with several actions. This
differs from the present system. WEEDOF can
calculate the changes in count of weeds due to
the effect of an action. The seed rotation is
examined when certain weeds are present and
the effect on the seed content in soil is not
handled explicitly.
The model must be implemented in a language
and built into an expert system. For the imple­
mentation of the model any ordinary program­
ming language, for instance PASCAL, is
usable. The present framework of a model has
been implemented in PASCAL. The way of
specifying the model, resulting in a model
consisting of functions, makes it extremely
easy to implement. The functions are simply
represented as procedures and functions in the
chosen language. For instance the domains

State, SeedSituation and SeedContent may be
represented like this in PASCAL:
state = record

seed : seedsituationp;
plant: plantsituationp;

end ;

seedcontentp = Aseedcontent;

seedcontent = record
d: depth;
c: count;

end;

seedsituationp = Aseedsituation;

seedsituation = record
sp: speciestype;
sc: arrayt1.,2] of seedcontent;
next: seedsituationp

end;

Then a function like seedSupply could be
implemented like this:
procedure seedsupply(var sp: speciestype;

popdev: populationdevelopmentp; sc:
seedcontentp; tid, tidh: tidtype);

var
list:seedcontentp;

begin
list := sc;
listA [1].c:= listA [1].c + seedproduc-
tion(sp, popdev, tid, tidh);

end;

A possible structure for a system with the
implemented model is seen in figure 4.6.
The system has a part which collects initial
information just like WEEDOF. The initial
information is the crop, the use of the crop,
the weeds normally present on the field, a size
factor for the populations, the time of the year,
and the period of the simulation.
The heuristic knowledge base suggests, on the
basis of the initial information, a list of actions
for the first crop. As is the case of WEEDOF,
the choice of mechanical actions is constrained
by the soil type and stones. Other rules in the
heuristic knowledge base will constrain the

62

4 A Model based system

Initial information

Plan for period

Figure 4.6 Possible structure fo r a model
based expert system.

possible actions according to crop type, to
sensible combinations according to the expert
and actions which can be performed during the
period.
The result from the heuristic knowledge base
is then a list of possible plans for weed control
in the present crop (lists of actions with times).
The model is now used for simulating the
plans. The result of the simulation is a state for
each plan, describing the predicted seed situ­
ation and plant situation after performing the
actions. If the period is longer than one grow­
ing season another crop has to be included
before the system starts over again creating a
new list of plans and simulating them. A
choice between the plans has to be made at
some time in long periods, otherwise a combi­
natorial explosion will occur sooner or later.
The choice should be made before a new crop

is included and could be left to the user, or the
system could choose the plan with the best
controlling effect on weeds.
When the system comes to the end of the total
period for simulation, the results shall be
written to the user. The results could be sev­
eral plans for controlling the weeds and the
resulting predicted plant and seed situation
afterwards. In case the user asks for informa­
tion on how the end state was calculated the
explain module will replay the model with the
plan and explain each step in the function.

4.6 Summary and conclusion
This chapter describes the specification of a
model which could be used in an expert sys­
tem. The model is not finished yet. A skeleton
has been made where the functions can be
placed. For some of these functions there has
been a research for suitable mathematical
expressions. This has been the case for the
growth function where especially the effect of
competition has been examined. But other parts
have never been modelled the way it is needed
here. The decisions about the missing functions
remains. In the skeleton abstract domains for
variables have been defined. Care has been
taken to define these domains in the best poss­
ible way for usage, but the decision of the
exact values for for instance Developmental
stage has been postponed until later.

/

Another part which has been postponed is the
decision of the time steps for the model. For
the moment the time steps is decided by the
time between succeeding actions. It will prob­
ably be necessary to have shorter time steps. A
possible way to implement this in the present
structure, is to invent a new action ‘no-action’
to put into the list of actions when the time
steps are too long.

63

Models can be used in different ways in model
based expert systems. The expert system part
may be used as simply a wrapping for the
model to collect the input parameters and
interpret the output parameters. Or the model
could be a part of the whole system which may
contain other parts as for instance data bases as
in Jones et al (1987).
In this system the model is intended to be used
the latter way. The model shall partly simulate
the growth and developments of plants, partly
explain the results. With such a general popu­
lation dynamic model the predictions will
probably not be very good. But we need a
model with explanatory power, which can
reveal the trends in the system and explain
them. The explanations are extremely import­
ant - more important than the closer fit that
could be obtained with an empirical model for
instance.
To specify the model a new method in agricul­
tural connections has been used. The method
of specifying systems by functional decomposi­
tion is well known in computer science, but
has not been used in agricultural modelling.
The method has shown - not unexpected - to be
very good also in this type of system descrip­
tion. The top-down method of specification
gives the possibility to decompose problems
and in that way push problems ahead, to be
solved in another help function at a later stage
when the problem has been split and changed
to a smaller and more manageable one.

64

5 Summary and conclusion
The work in this Ph.D. project focused on two
different subjects: Building a prototype for
planning weed control in organic farming and
specifying a dynamic model for plant growth.

5.1 Prototype
The standard construction method of rule based
expert systems is an iterative procedure where
the knowledge engineer proceeds through the
phases of conceptualization, formalization, and
implementation over and over again. There is
no formal method for construction of expert
systems, but a number of descriptions of
methods for knowledge elicitation and knowl­
edge representation. Research results on prel­
iminary knowledge analysis methods and
domain characterization methods are underway
(Nwana et al 1991), but so far each new sys­
tem builder has to find the best way to con­
struct these systems.
In this experiment the knowledge engineer was
new in the field of knowledge engineering, and
the first prototype probably took longer to
construct than it would have taken for an
experienced knowledge engineer, but the
development was facilitated by the use of a
new method for the initial knowledge acquisi­
tion - literature analysis. In literature analysis
texts from the domain are analyzed to extract
the important concepts of the domain, and the
rules about the concepts such as definitions and
causal relations. A parallel method has been
used for automatic construction of small know­
ledge bases (Gomez & Segami 1990).
In net time the analysis probably took about 2-
3 months. The result was a concept hierarchy
and a survey of rules, as well as something
more indefinable - a feeling of understanding
the domain, knowing the important concepts,

the relations and so on. Concepts often seem
very obvious when they are written down, and
many of them would have been mentioned as
important subjects in an interview with the
expert. In this case one of the experts would
probably have been able to work out the con­
cept hierarchy and additional methods as for
instance repertory grid or scaling techniques
could have helped to reveal relations between
them. But the strength of the literature analysis
is that it is a simple semi-formal method which
ensures that all relevant concepts - at least the
concepts which are considered relevant in
teaching the subject - are included with the
important relations to them.
The rest of the knowledge acquisition was done
using interviews. The interviews could be
structured from the beginning because of the
initial literature analysis which had provided
the basis material. All in all only about six
interviews were executed, the rest of the
knowledge elicitation was done by letters and
telephone calls.
The domain chosen - control of weeds in
organic farming - was characterized by uncer­
tain and missing knowledge. Research in the
subject has been stopped for many years since
the discovery of chemical methods, and was
only recently restarted. It is a biologic domain
and a lot of factors effects the growth and de­
velopment of plants. The researchers in the
domain were very doubtful about the possibil­
ity of developing expert systems in their
domain. However the test succeeded. The
experts were satisfied with the prototype. The
experts also felt they had developed a new
insight in their domain during the process of
developing the expert system. The domain is
studied so thoroughly that the experts discover
weaknesses in the knowledge about the domain
which result in new experiments. In addition to

65

the outcome from an expert system project in
the form of a system, the project also gives a
bonus for the experts involved in the form of
a better survey of the present as well as the
missing knowledge of the domain.
The resulting system - WEEDOF - was coded
in EGERIA, an expert system shell. One of the
important things missing from the present
system is the explanations. First of all the
explanations are very poor because of the
combination of the shell and the system. The
shell only supports explanations as a trace of
the rules used during backtracking. As the
present system uses forward chaining alternat­
ing with backward, this prevents the mecha­
nism from functioning satisfactorily. Even if
explanations could be formed from the knowl­
edge in the present knowledge base, these
explanations would be poor compared to the
explanations from an expert. The expert will
incorporate his models of the domain in the
explanations, whereas the system can only
replay the knowledge in the knowledge base
which is largely heuristic. This is one of the
reasons why the work proceeded by specifying
a model.

5.2 Model
Another reason for working on the model is to
make a system with a knowledge base which is
more reusable than the heuristic knowledge
base. A disadvantage of these model based sys­
tems is that they are less efficient.
Models can be used in different ways in model
based expert systems. The expert system part
may be used simply for collecting information
for the simulation and for interpreting the
output. The model could be an integrated part
of the system as could for instance databases.
The system could also embrace several models,

as for instance refinements to be able to ex­
plain on different levels.
In this work the model was intended to be an
integrated part of the system where the expert
system not only collects input for the model
and interprets its output, but also does a heu­
ristic job finding the relevant or possible con­
trol actions before simulating.
The work on the model has been started but
the model based system itself is only in the
preliminary stage. The method used in specifi­
cation of the model is new in agricultural con­
nections. The method of specifying systems by
functional decompositions is well known in
computer science, where it is used in the
Vienna Development method - VDM (Bjømer
& Jones 1982) - for computer systems. The
model has been specified in META IV, and the
method has shown to be useful also in this type
of system description. The top-down method of
specification implies decomposing problems,
and in that way trying to simplify them before
they have to be solved.
The model which has been specified, or partly
specified, is a dynamic model for the total
plant growth on a field. The model is intended
to account for effects on the growth of diffe­
rent actions, as for instance harrowing. The
model should also incorporate competition
between species. The model should be general,
making it possible to describe the growth of all
the plants on a field. The question is if it is
possible to make such a general model at
present.

The model specified here relies on the life
cycle of plants which are fairly common.
There is a general pattern of life in plants
where seeds germinate to plants which grow,
set flowers and seed. The model then has to be
able to model both those plants which are

66

5 Summary and conclusion
annual and those which are perennial, seed - as
well as root propagating species. In the model
there are two different contributions to the
plant growth. One is the natural plant growth
according to the species and constrained by
competition - other constraints for instance nu­
tritive and climatic have not been considered
yet. The life cycle was used as basis in the
decomposition of the model into functions. The
other contribution is the impact on plants and
seeds of the actions performed on the field.
The specifications show all the functions which
are necessary to describe this, with the input
and output to them. The concrete algorithmic
specifications have not been made. Every
model of course is a simplification of the real
world. Some or maybe all of the functions in
this model could be described better for
instance with an empirical model. The func­
tions in the mechanistic model are made of
parts in a way that try to imitate the construc­
tion in nature. To make it possible to survey
the model the functions are kept rather simple.
Parts are missing, either because they are
deliberately omitted - for instance because they
are considered of minor importance - or
because the knowledge is missing. However
the reason for retaining the mechanistic model
is the ability to explain and justify the function­
ing of the resulting system in terms of the deep
knowledge of the domain.

5.3 Expert systems and agriculture
Can expert system technology be used in
agriculture? There are obvious possibilities in
agriculture where the technology will be
usable. Examples are:
• surveillance for instance of climate in green­

houses,
• planning in farming - for instance planning

the distribution o f the available manure in

organic farming,
• diagnosis of for instance sicknesses.
During time more and more knowledge has to
be included in decisions in agriculture to
ensure the necessary profit. Now that pc’s are
getting used in the farmers production, there
will be a marked for decision support systems.
Not necessarily expert systems but they will be
part of the new systems.
The trend of expert systems usage is to inte­
grate them with other types of software. The
original expert systems are stand-alone systems
on a narrow domain. It is generally considered
to be an advantage to integrate the expert
systems with databases or models and let them
work in cooperation with other software the
user is attending. In that way the expert sys­
tems becomes a natural part of a larger pack­
age and is used more.
Construction of expert systems generally takes
longer time than construction of ordinary
computer programs. Therefore it is important
to be careful in choosing domains where the
development can be justified. This could be on
basis of for instance profit or lack of available
expert time. The last reason has been the basis
for instance in Australia where the distances
are enormous and the experts few (Waterhouse
et al 1989). Looking at the conditions in Den­
mark, the income on systems in agriculture
could easily be too small to pay for the devel­
opment of Danish expert systems. Some sys­
tems could in stead be developed for the larger
EEC marked, or North European countries in
cases where South Europe is very different
from Denmark.
In the future there are hopes that the develop­
mental costs of expert systems will become
smaller. New knowledge acquisition tools are
coming up which aims at easing the knowledge

67

collection, for instance by giving the expert
tools to codify his knowledge, and new metho­
dologies are developed to formalize the devel­
opment process - literature analysis could be
the background of a more formal approach.
The agricultural researchers seems to have
advantages from cooperating in expert system
projects. The different way of working with
the domain when eliciting and formalizing the
knowledge gives a feed back to the expert in
the form of a better insight of usable knowl­
edge and weaknesses in the knowledge of the
domain, as the present project has shown. The
work on an expert system project will often
mean a formalization of knowledge making it
possible to rewrite the knowledge in traditional
program languages which will give more
efficient programs.

68

6 References
Anonymous 1989a. Expertech. Egeria. Expert

systems with Egeria. Version 1.1.
Anonymous 1989b. Expertech. Egeria. Tech­

nical reference manual. Version 1.1.
Anonymous 1989c. Expertech. Egeria. PC-

DOS reference manual. Version 1.1.
Ballegaard, T. & Haas, H. 1990. WEEDEX -

an expert system for identification of weed
seedlings. Papers presented at a workshop
on expert systems in agricultural research
Ebeltoft 4-5 december 1990. Fællesberet­
ning nr SF1, 27-31.

Barralis, G., Chadocuf, R. & J. P. Lonchamp
1988. Longevité des semences de mau-
vaises herbes annuelles dans une sol cul-
tivé. Weed Research 28, 407-418.

Barrett, J.R. & Jones, D.D. 1989. Knowledge
engineering in agriculture. American
Society of Agricultural Engineers.

Batchelor, W.D. & McClendon, R. W. 1989.
Evaluation of SM ARTSOY: An expert
simulation system for insect pest manage­
ment. Agricultural Systems 31, 67-81.

Beck, H ., Jones, P ., Watson, D. & Zazueta,
F. 1989. An expert database system for
ornamental plants. Agricultural Systems 31,
111-126.

Bjørner, D. & Jones, C.B. 1982. Formal
specification & software development.
Prentice-Hall.

Bliss, C.l. 1970. Statistics in Biology. Statisti­
cal Methods for Research in the Natural
Sciences. McGraw-Hill.

Boggess, W.G., Blokland, P.J. & Moss, S.D.
1989. FinARS: A financial analysis review
expert systems. Agricultural Systems 31,
19-34.

Buchanan, B.G. & Smith, R.G. 1989. Funda­
mentals of Expert Systems. In Barr, A.,
Cohen, P.R. & Feigenbaum, E.A. (eds):
The Handbook of Artificial Intelligence vol
IV. Addison-Wesley.

Burton, A.M., Shadbolt, N.R., Rugg, G.,

Hedgecock, A. P. 1990. The efficacy of
knowledge elicitation techniques: a com­
parison across domains and levels of exper­
tise. Knowledge acquisition 2, 167-178.

Brummenæs, N. 1990. Teknikker for tapping
av kunnskap. Department of Computer
Science. Technical University of Denmark.

Clancey, W.J. 1985. Heuristic Classification.
Artificial Intelligence 27, 289-350.

Conolly, J ., Wayne, P. & Murray, R. 1990.
Time course of plant-plant interactions in
experimental mixtures of annuals: density,
frequency, and nutrient effects. Oecologia
82, 513-526.

Courtney, A.D. & Johnson, R.T. 1988. Crop
Equivalents of Weeds in Spring Barley.
Aspects of applied biology 18, 57-62.

Cousens, R. & Moss, S.R. 1990. A model of
the effects of cultivation on the vertical dis­
tribution of weed seeds within the soil.
Weed Research 30, 61-70.

Cussans, G.W. & Rolph, J. 1990. HERB-
MAST - a herbicide selection system for
winterwheat. Proc. EWRS Symposium
1990,Integrated Weed Management in
Cereals, 451-457.

Dindorp, U. 1990a. Ekspertsystemer og deres
brug i jordbrugssektoren. Temadag om
Biometri og Informatik. Tidsskrift for
Planteavls Specialserie. Beretning nr s2053.
77-82.

Dindorp, U. 1990b. Development of an expert
system for non-chemical weed control.
Papers presented at a workshop on Expert
Systems in Agricultural Research. Fæl­
lesberetning nr SF1, 23-26.

Dindorp, U. 1991a. Developing WEEDOF, a
prototype expert system for planning weed
control in organic farming. Temadag om
Biometri og informatik. Tidsskrift for
Planteavls specialserie. Beretning nr s2129,
7-14.

Dindorp, U. 1991b. Literature analysis for

69

knowledge acquisition. Proceedings of the
SC AI ’91, Roskilde. Denmark 21-24 may
1991, 77-82.

Doluschitz, R. 1990. Expert systems for man­
agement in dairy operations. Comput. Elec­
tron. Agric. 5, 17-30.

Doyle, C .J., Cousens, R. & Moss, S,R, 1986.
A model of the economics of controlling
Alopecurus myosuroides Huds. in winter-
wheat. Crop protection 5,143-150

Dreyfus, H. & Dreyfus, L. 1986. Mind over
Machine. Basil Blackwell Ltd.

Fynn, R.P., Roller, W.L. & Keener, H.M.
1989. A decision model for nutrition man­
agement in controlled environment agricul­
ture. Agricultural Systems 31, 35-53.

Gaultney, L.D ., Harlow, S.D. & Ooms, W.
1989. An expert system for troubleshooting
tractor hydraulic systems. Comput. Elec­
tron. Agric. 3, 177-187.

Gold, H.J., Wilkerson, G.G., Yu, Y. &
Stinner, R.E. 1990. Decision analysis as a
tool for integrating simulation with expert
systems when risk and uncertainty are
important. Comput. Electron. Agric. 4,
343-360.

Gomez, F. & Segami, C. 1990. Knowledge
acquisition from natural language for expert
systems based on classification problem­
solving methods. Knowledge acquisition 2,
107-128.

Haas, H & Ballegaard, T. 1988. Identifikation
af ukrudtsarter på unge udviklingsstadier
ved hjælp af et edb-ekspertsystem. Danske
Planteværnskonference / Ukrudt ,102-112.

Hamilton, A. G. 1988. Logic for Mathema­
ticians. Revised edition. Cambridge Univer­
sity Press.

Hansen, S., Jensen. S.E., Nielsen, N.E. &
Svendsen, H. 1990. DAISY - Soil Plant
Atmosphere System Model. NPO-Research
Report No. A 10. The National Agency of
Environmental Protection. Copenhagen,
Denmark.

Harder, B. 1990. Konstruktion af videnbase­
rede systemer, EC-rapport 240.

Hart,A. 1986. Knowledge acquisition for
expert systems.Kogan Page Ltd.

Hayes-Roth, F ., Waterman, D .A., Lenat, D.B.
1983. Building expert systems. Addison-
Wesley.

Huber, B., Nyrop, J.P., Wolf, W. , Reissig,
H ., Agnello, A. & Kovach, J. 1990. Devel­
opment of a knowledge based system sup­
porting IPM decision making in apples.
Comput. Electron. Agric. 4, 315-331.

Håkansson, S. 1991. Growth and competition
in plant stands. Crop Production Science
12. SLU/Repro, Uppsala.

Jacobson, B.K. , Jones, P.H. , Jones, J. W. &
Paramore, J .A. 1989. Real time green­
house monitoring and control with an
expertsystem. Comput. Electron. Agric. 3,
273-285.

Jensen, P.K. & Kudsk, P. 1988. Prediction of
herbicide activity. Weed Research 28, 473-
478.

Jones, J .W., Jones, P. & Everett, P.A. 1987.
Combining Expert Systems and Agricul­
tural Models: A Case Study. Transactions
of the ASAE 30,1308-1314.

Jones, P. 1989. Agricultural applications of
expert systems concepts. Agricultural Sys­
tems 31, 3-18.

Kline, D.E., Bender, D.A., McCarl, B.A. &
Van Donge, C.E. 1988. Machinery selec­
tion using expert systems and linear pro­
gramming. Comput. Electron. Agric. 3,
45-61.

Martinsen, I. -M ., Stausgaard, J. P ., Weibel, S.
1986. Ekspertsystemer i landbrugssektoren.
Specialerapport, Aarhus Universitet.

McKinion, J.N. & Baker, D.N. 1989. Appli­
cation of the GOSSYM/COMAX system to
cotton crop management. Agricultural Sys­
tems 31, 55-65.

McKinion, J.M. & Lemmon, H.E. 1985.
Expert systems for agriculture. Comput.

70

Electron. Agric. 1, 31-40.
Morgan, O. W., McGregor, M .J., Richards,

M. & Oskoui, K.E. 1989. SELECT: An
expert system shell for selecting amongst
decision or management alternatives. Agri­
cultural Systems 31, 97-110.

Moss, SR. 1983. The production and shedding
of Alopecurus myosuroides Huds. seeds in
winter cereals crops. Weed Research 23,
45-51.

Moss, S.R. 1985. The survival of Alopecurus
myosoroides Huds. seeds in soils. Weed
research 25, 201-211.

Moss, S.R. 1990. The seed cycle of Alope­
curus myosuroides in winter cereals: A
quantitative analysis. Proc. EWRS sympo­
sium 1990,integrated weed management in
cereals, 27-36.

Nilsson, N.J. 1982. Principles of Artificial
Intelligence. Reprint. Springer-Verlag.

Nwana et al 1991. Facilitating development of
KB’s. AI Com 4, 60-73.

Pasqual, G.M. & Mansfield, J. 1988. Devel­
opment of a prototype expert system for
identification and control of insect pests.
Comput. Electron. Agric. 4, 263-276.

Plant, R.E. 1989. An artificial intelligence
based method for scheduling crop manage­
ment actions. Agricultural Systems 31, 127-
155.

Rasmussen, J. 1990. Ukrudt i agerlandet In
Ukrudtsbekæmpelse i landbruget. Statens
Planteavlsforsøg, Plantevæmscentret.

Rasmussen, J. <£ Vester, J. 1990. Ikke-kemisk
ukrudtsbekæmpelse In Ukrudtsbekæmpelse
i landbruget. Statens Planteavlsforsøg,
Plantevæmscentret.

Rich, E. 1983. Artificial Intelligence. Mc­
Graw-Hill.

Rischel, H. 1987. Programdesign sat på form­
ler. Department of computer science. Tech­
nical University of Denmark.

Roach, J., Virkar, R ., Drake, C. & Weaver,
M. 1987. An Expert System for helping

6 References
Apple Growers. Comput. Electron. Agric.
4, 97-108.

Shaw, M.L.G. & Woodward, J.B. 1990. Mo­
deling expert knowledge. Knowledge acqui­
sition 2, 179-206.

Sowa, J. F. 1984. Conceptual structures :
Information processing in mind and
machine. Addison-Wesley.

Spiegelhalter, D.J. & Lauritzen, S.L. 1988.
Local computations with propabilities on
graphical structures and their application to
expert systems. J.R.Statist.Soc.B 50(2)-
,157-224.

Spiegelhalter, D.J. & Lauritzen, S.L. 1990.
Techniques for Bayesian analysis in expert
systems. Annals of Mathematics and Artifi­
cial Intelligence 2, 353-366.

Spitters, C.J.T., Keulen, H. van & Kraalin-
gen, D. W. G. van 1989. A simple and uni­
versal crop growth simulator: SUCROS87
In R.Rabbinge, S.A.Ward & Laar, H.H-
.van (eds) Simulation and Systems manage­
ment in Crop protection. Wageningen,
32,147-181.

Stone, N.D. & Toman, T.W. 1989. A dynami­
cally linked Expert-Database system for
decision support in Texas Cotton Produc­
tion. Comput. Electron. Agric. 4, 139-148.

Sørensen, P.S. 1987. Ekspertsystem til biolo­
giske renseanlæg. Exam.proj. Technical
university of Denmark.

Wain, N. , Miller, C.D.F. & Davis, R.H.
1988. A rule-based inference system for
animal production management. Comput.
Electron. Agric. 2, 272-300.

Waterhouse, D.B., Lodge, G.M. & Bishop,
A.L. 1989. LUPEST personal communica­
tion. New South Wales Department of
Agriculture and Fisheries. Agricultural
Research Centre.

Waterman, D.A. 1986. A Guide to Expert Sys­
tems. Addison-Wesley.

Whittaker, A.D. , Tomaszewski, M.A., Taylor,
J.F., Fourdraine, R. & van Overveld, C. J.

71

1989. Dairy herd nutritional analysis using
knowledge systems techniques. Agricultural
Systems 31, 83-96.

Wilson, B.J. 1986. Yield responses of winter
cereals to the control of broad-leaved
weeds. Proc. EWRS Symposium 1986,
Economic Weed Control, 75-82.

Wilson, B.J. & Wright, K.J. 1990. Predicting
the growth and competitive effects of
annual weeds in wheat. Weed Research 30,
201- 211 .

Woodward, B. 1990. Knowledge acquisition at
the front end: defining the domain. Know­
ledge acquisition 2, 73-94.

Yoeli, R ., Manor, G. & Gill, A. 1989. Mode­
ling human intuition in an expert system for
planning aerial application operations.
Comput. Electron. Agric. 4, 13-22.

Zwerger, P. & Hurle, K. 1986. Veränderung
der lebens- und keimfahigkeit von unkraut-
samen im boden. Med. Fac. Landbouww.
Rijksuniv., Gent 51,325-332.

Zwerger, P. & Hurle, K. 1989. Untersuchun­
gen zur relativen Bedeutung einzelner
populationdynamischer Parameter für die
entwicklung der Verunkrautung. Zeitschrift
für Pflanzen krankheiten und Pflanzen­
schutz 96, 346-352.

Østerby, T. 1988. Knowledge acquisition and
specification in Information modelling and
knowledge bases, IOS Press Amsterdam.

72

Appendix A l

For the literature analysis a couple of articles from a book on weed control (Rasmussen 1990,
Rasmussen & Vester 1990) was used. In this appendix a part of one of the articles is reproduced
in an english translation. The underlined sentences were the ones considered to contain important
information.

Non-chemical weed control
Jesper Rasmussen and Jacob Vester (translated from danish)

4.1 Preventive methods
Crop rotation
Formerly there used to be some constraints on
the crop rotations which alone was due to weed
considerations. Such constraints are still known
in organic farming, where no plant protection
chemicals are used. Without effective control
methods, the key to clean fields are in a
balanced crop rotation where crops of different
life-length are alternating. Many weeds are
propagated in a certain crop type and this
diminishes the possibility for single weeds to
multiplicate.
The effect of crop rotation on the weeds are
often difficult to predict. This is because the
crop rotation deals with both crops in different
orders, and with the methods of cultivation for
the crops. In the following there will only be
given some general guiding lines for the
influence of crop rotation on weeds.
For weeds which propagates in special crops,
there are good possibilities to use crop rotation
in weed control. This counts especially for
weeds with a short durability in soil, for
instance Avena fatua. Galium aparine and
Apera spica-venti. If these species only have
opportunity to seed in one or two crops in a

balanced crop rotation, they will have
difficulties to survive, because a large part of
their seeds are destroyed before the right
propagation conditions are available again.
For weeds which can propagate in a variety of
crops, for instance Stellaria media and Poa
annua the crop rotation will have a minor
influence on the control. This also counts for
species with a long durability in soil. They will
not have difficulties surviving as seeds and
emerge when the right conditions are available
(for instance Chenopodium album).
Crop rotation the is not a cure for weeds. Crop
rotations which are especially suited for some
weeds will some times favour other weeds.
This is seen in figure 4.1.1: Avena fatua and
Alopecurus myosuroides propagate in different
crop rotations. Avena fatua propagate in spring
cereals, and Alopecurus myosuroides in winter
cereals. If crop rotation has to be used for
weed control, one has to know which weeds
one wishes to control. For the root propagated
weeds the rotation must give possibility to
control mechanically or chemically.
Deep soil treatment
Plowing has especially an effect on root
propagated weeds but also influences the
annual weeds.

73

Often problems are encountered with annual
grass weeds and root propagated weeds when
plowing is omitted (table 4.1.1).
The root propagated weeds propagate when
plowing is omitted. Plowing weakens the
vegetative reproductive organs by burying
them, so they have to use energy to regrow.
This is important, when the weed grows with
a strongly competitive crop as for instance
com (fig 4.1.2).
The reaction of the annual species are more
complicated but still understandable.
An ordinary winter plowing will bury
approximately 95 % of the seeds from the soil
surface in more than 5 cm depth, ie deeper
than most weeds will be able to germinate
from. At the plowing next year many seeds
will be plowed up again. When plowing, the
main part of the germ plants will stem from
seeds more than a year old (figure 4.2.3).
In plowing free cultivation the main part of the
germinated weeds will stem from seeds less
than one year old, because the last produced
seeds still is near the soil surface. This is an
important cause of the different reactions from
the weeds to deep soil treatment. Species with
a short seed durability has a handicap to
species with long durability, when the majority
of the germination is from seeds more 1 1 /2
year old, as is the occasion when plowing.
A species as Galium aparine will propagate
itself immensely when cultivating without
plowing. Its seeds has a very short durability
in soil. The germination percent falls about
60% per year compared to about 30% normal
for several other species.
The different weed species ability to survive as
seeds in soil is treated in chapter 2.

It is no law of nature that species with a short
seed durability will give problems with
plowing free cultivation, even if their
possibility for propagation will increase. These
species will often be removed faster from the
soil seed reserves if, at the same time, an
effective control is carried through, than by
plowing. If the soil is plowed a much larger
volume of soil has to be depleted for living
seeds than by a more superficial treatment,
therefore it will take a longer time. In table
4.1.2 and 4.1.3. is a couple of examples of
adapting the deep treatment to make the weeds
germinate in the crop, where it is desirable.
This could be in a crop where the particular
species is easy to control.
Sowing bed preparation
The sowing bed preparation has also an
influence on the weeds. In the fall an early
sowing will generally give the biggest weed
problems (figure 4.1.4.).conversely late sowing
gives the biggest weed problems in the spring
for com crops. In the warmth demanding crops
several harrowings before sowing can reduce
the germination in the crop.
Here the weed species also differs. For
instance it has shown, in Swedish and English
trials, that 10 davs delavment in the sowing of
spring crops can reduce Avena fatua problems
considerably. It is important to sow in the right
depth, in order for the crop to germinate
quickly and uniform. That will give the
greatest possible competitive ability towards
the weeds.

74

Appendix A2

Notes from the literature analysis
The literature analysis produced two things as described in chapter 3. A concept hierarchy which
is reproduced in appendix A3 and a set of notes concerning information on the concepts in the
hierarchy. This appendix contains some of the notes from the analysis.

Plants
Plants = ‘green part’ + root.
Vegetative reproductive organs is a part of root.
Vegetative reproduction = above soil rep., in soil rep., on place rep.
Perennial plants normally has vegetative reproduction.
Plants with vegetative reproduction has vegetative reproduction organs.
The ‘green part’ of plants with vegetative reproduction produces reserves.
Plants with vegetative reproduction collects reserves in soil organs.
Soil organs is a part of root.
Winter removes the ‘green part’ of some plants.
Weed control removes the ‘green part’ of plants.
When the ‘green part’ of plants is missing they will use reserves to grow again.
Shadowed plants grows poorly or die.
Covering plants causes them to die.
Competitive ability = ability to make other plants grow poorly or die.
Good growing conditions causes good competitive ability.
Plant sensitivity to harrowing decreases with increasing size.
Plant size increases through summer.
Intensity of harrowing can increase when plant size is increasing.
Weeds
Weeds are plants.
Weeds depreciate the crop qualitatively or quantitatively.
Many weeds only grows on cultivated soil.
Most seed propagated weeds stems from locally produced seed.
Some seed propagated weeds are sown with the crop because the seed is mixed with the crop
seeds.
Annual grass weeds are seed propagated.
Annual grass weeds has a very low seed durability.
Root weeds are weeds with vegetative reproduction.
Reproduction of root weeds depends on the reserves in the organs under soil.
Weeds causes harvest troubles, drying costs, vaste by seed cleaning.
Some weeds are poisonous.
There is most weeds on humus, less on clay soil.
Plowing is important to control perennial weeds.
If the crop germination time is earlier than the weeds, then the crop competitive ability is the

75

6

largest.
Agricultural crop plants often have a lower germination temperature than weed seeds.
A varied crop rotation reduces the weed count.
Most weeds are annual.
Dry matter minimum = time where a plant have used reserves to shoot and are about to start
producing dry matter.
Dry matter minimum:
Elymus repens = 3-4 leaves.
Sonchus arvensis = 5-7 leaves.
Cirsiun arvense = early bud.

Ten days later germination in the spring diminish the amount of Avena fatua germinating.
The amount of Elymus repens doubles from corn harvest (july-august) to time of winter plowing
(oct-nov).
Elymus repens grows in the summer.
Elymus repens rests from late fall, and during the winter.
Elymus repens germinates from runners.
Do not spread Elymus repens runners.
Elymus repens amount is largest at borders, around stones and in perennial plants.
Hoeing: Weeds with large competitive ability and early stretching growth gives problems in the
row.
Effect of hoeing on large weeds increase with speed (from 4-6 km/h to 10-12 km/h).
Crop
Make sure the crop has a good competitive ability.
Crop with a high germination temperature has a late sowing time.
Several harrowings can control weeds if the crop has a late sowing time.
Hoeing can be used in Zea mays against all seed reproductive weed.
Hoeing can be used in Solanum tuberosum against Elymus repens.
Hoeing can be used against Elymus repens.
Yield will decrease if more than 20% of the crop leaves are covered
Yield = the harvested part of crop.
Row crops = crops, which are planted or sowed in a manner so the distance between rows are
larger than the distance between plants.
Wet soil gives a bad competitive ability.
Sour soil gives a bad competitive ability.
Secale cereale shades the best.
Avena sativa shades better than Triticum aestivum.
There is a substantial difference between varieties in the competitive ability.
Agricultural crop plants often have a lower germination temperature than weed seeds.
Soil
Soiltype:
There is most weeds on humus, less on clay soil.
Harrowing: Sandy soils are the easiest to harrow.

76

Concept hierarchy
Appendix A3

An immediate usefull result from the literature analysis (chapter 3) is the concept hierarchy. It
gives a good overview over the important concepts in the subject weed control. And it was used
in the implementation in the object oriented shell.
The top part of the hierarchy (fig 3.1) is universal and can be used in all domains, This is the left
most part of this table. The attributes is the first part of the table. These are ordered after the
concepts to which they are connected.

Attributes Plant at­
tributes

Attributes Weed at­
tributes

Attributes Crop
attributes

Attributes Seed
attributes

Attributes Harvested
crop
attributes

Species
Lifelength
Propagation
Competition abi­
lity
Size
Dry matter mini­
mum
Indicator of lime
deficiency
Indicator of poor
drainage
Harrow toler­
ation
Count

Sort
Used as
Method of culti­
vation
Germination time
Temperature for
germination
Germination
capacity
Germination
ability
Yield

77

6 *

Attributes Soil
attributes

Type
Seed content
Manure content
Water content
Acidity

Attributes Sowing
attributes

Seed quantity
Time
Depth
Quality of sow­
ing bed
Row space

Attributes Climate
attributes

Temperature
Humidity

Object Plant Grown plant Weed
Object Plant Grown plant Crop
Object Plant Seed
Object Plant Vegetative repro­

duction organs
Underground
reproduction
organs

Thing Soil
Thing Harvested

crop
Thing Reserves
Situation Incident Action Sowing
Situation Incident Action Soil prepara­

tion
Manuring
Plowing
Draining
Lime

Situation Incident Action Weed control Harrowing
Hoeing
Stubble treating
Row cleaning
Flame treat­
ment

Situation Incident Action Crop rotation
Situation Event Climate

78

Appendix A4

Calculations of reduction in yield
In WEEDOF CE values is used for calculating predicted reductions in yield. CE values expresses
the count of crop plants one weed plants can replace. There is a CE value for winter crops and
one for spring crops. According to the crop species the CE values are adjusted with a factor.
CE values for weeds

Weed Winter crops Spring crops
Sinapis/Brassica 0.65 0.7
Viola arvensis 0.10 0.06
Stellaria media 0.50 0.10
Chenopodium album 0.10 0.15
Lamium spp. 0.30 0.01
Galeopsis spp. 0.30 0.30
Polygonum spp. 0.08 0.12
Galium aparine 0.90 0.11
Tripleurospermum inodorum 0.50 0.11
Chrysanthemum segetum 0.31 0.30
Papaver rhoeas 0.70 0.10
Poa annua 0.01 0.01
Veronica persica 0.5 0.05
Myosotis arvensis 0.20 0.09
Apera spica-venti 0.35 -
Alopecurus myosuroides 0.35 -
Elymus repens 0.80 0.60
Cirsium arvense 5.00 3.00
Sonchus spp. 5.00 3.00
Avena fatua 0.8 -

Factors for multiplying with CE for cultures
Winter crops factor Spring crops factor
Triticum aestivum 1 Hordeum vulgare 1
Secale cereale 0.8 Triticum aestivum 1.25
Hordeum vulgare 0.9 Avena sativa 0.9

Pisum sativum 1.5
Vicia faba 1.5

Example
We have an expected count of Stellaria media of 10/m2 and of Viola arvensis of 15/m2 in winter

79

wheat - Triticum aestivum. The CE value is 0.5 for Stellaria media in winter crops, and 0.1 for
Viola arvensis. The multiplying factor for winter wheat is 1.
The total CE value is then 1 X ((10 X 0.5) + (15 X 0.1)) = 6.5
The predicted reduction in yield i s then (100 X 6.5) / (6.5 + 400)= 1.6%

80

81
Appendix A5

Model

This appendix contains a META IV specification of a model for crop and weeds on a field.
The model should describe growth and development in a specified period. Including the
effects of actions as for instance weed control.

The overall function is called farming and pictures system state, field information, time and
a list of actions on a new state and time:

1.0 type farming: S tate x Fieldlnformation x Time x Actionlist —»State x Time
.1 farming (st, field, t, acl)
.2 d=
.3 if ac l= < > then (st,t)
A else
.5 let a l= hd(acl) in
.6 (let st2= simulatePlants(st, field, t, s-tim e(al)) in
.7 (let st3 = simulateAction(st2, s-action(al), field, s-tim e(al)) in
.8 farming(st3, field, s-tim e(al), tl(acl))
1.9))

Comments:
3. If the list of actions is empty, the function returns the start state and time.
5. otherwise a l is the first element in the action list.
6. The help function simulatePlants simulates plant growth and - development from start

time to time of a l.
7. SimulateAction simulates the effect of the action a l.
8. farming is called again with the rest of the action list as parameter.

The model shall be used to simulate a plan - the actionlist - generated by heuristic rules .

The data in the function are represented by the following domains:

82

2.0
.1
.2
.3
.4
.5
.6

.7

.8

.9
.10
.11
.12
.13
.14
.15
.16
.17
.18

2.19

State
SeedSituation
Seedcontent
PlantSituation
PopulationDevelopment
Heighttable
Species

Count
DevelopmentalStage
Height
Depth
Fieldlnformation
SoilType
Stone
Time
Year
Month
Day
Actionlist
Action

seedSituation x plantsituation.
species m seedcontent.
depth m count.
species m populationDevelopment.
developmentalStage m heighttable.
height m count.
‘Vinterrug’
I ‘Vinterhvede ’| . . . |‘Kløvergræs’|‘korsblomstrede’|
. . . I ‘agersennep’.
INTG.
‘kim ’ | ‘blomstring’ | ‘frøbærende’ ...
INTG ‘cm’.
‘<5 cm’| ‘>5 cm’.
soilType x stone .
‘svær ler’ | ‘ler’ | ‘sandblandet ler’ | ‘sand’ | ‘humus’,
‘få sten’ I ‘mange sten’,
year x month x day.
INTG.
INTG.
INTG.
{action x time } *.
‘Såning’ | ‘Harvning’ | ‘Radrensning’ | ‘Flammebe­
handling’ I ‘Pløjning’ I . . . I ‘Høst’ .

Appendix A5 83

Comments:
0. The state in the system is represented by the combined information in the seed

situation and the plantsituation.
1. The seed situation pictures the species in the soil seed content.
2. The soil seed content is a depiction of soil depth onto count.
3. Plant situation is a function of species onto population development, which is
4. a height table for each developmental stage present.
5. The height table is a count of plants for each height.
6. Species are any of the plants relevant in a model to be used in a weed control

system. All relevant species has to be filled in.
7. Count is an integer.
8. The stage of development can be small plant, flowering, seed bearing.
9. Height is an integer with the measure cm.
10. Depth is soil depth. It can be under 5 cm or over 5 cm. this is the im portant zones

in soil. Only seeds in the top 5 cm can germinate.
11. Field information is the combine information of soiltype and stone amount.
12. Soiltype is one of the mentioned types.
13. The classification of stone amount is: many or few stones.
14. Time is the combination of year, month and day.
15-17. Year, month and day are all integers.
18. Actionlist is a list of actions with a connected time to each action.
19. Action are any of the possible treatm ents in growing crops, except chemical.

The model does, for the moment, not include factors which are unaffectable, for instance
climate, or soil water, but considers the situation from standard conditions.

Another restriction in the current specification is the time steps for the simulation. The
specification gives the time steps as the time between actions in the actionlist. It is very
likely that the periods will be to long. A possible way to solve the problem later is to make a
new kind of action, no-action, and make sure that simulation periods have a maximum time
by inserting no.action in the actionlist.

Specieslist
For the simulation of growth and development we need a list of the species present:

3.0 Specieslist = Species *.

84

Invariant for specieslist:

4.0 type inv-Specieslist: Specieslist x SeedSituation x PlantSituation —► BOOL
.1 inv-specieslist (si, ss, ps)
.2 = f
.3 V a 6 elems(sl): a £ dom(ss) V a £ dom(ps)

Comments:
3. Expresses that each element in the species list must be a member of the domain of

species in the seed situation or member of the domain of species in the plant situation.

Function: simulatePlants
The function simulatePlants should simulate growth and development of the entire popula­
tion on the field.

5.0 type simulatePlants: State x Specieslist x Fieldlnformation x Time x Time —►
State

.1 simulatePlants (st, si, field, t, ta)

.2 =f

.3 if si = < > then st

.4 else

.5 let (seeds 1,plants 1) = simulatePlant(hd(sl), st, field, t, ta),
(seedsr, plantsr)= simulatePlants(st, tl(sl), field, t, ta)

in
(seeds 1 U seedsr , plantsl U plantsr)

Comments:
3. If the specieslist is empty the state is returned.
5. Otherwise growth and development for the first species in the specieslist is simulated

by the help function simulatePlant, and simulatePlants is called recursively with the
rest of the list.

SimulatePlant simulates growth and development of one species.

Function: simulatePlant
6.0 type simulatePlant: Species x State x Fieldlnformation x Time x Time —* State

A ppendix A5 85

.1 simulatePlant(sp, st, field, t, ta)

.2 d=

.3 let (ps,ss) = st in

.4 (let (ss2(sp), ps2(sp)) = germination(sp, st, field, t, ta) in

.5 (let ps3(sp)= vegetativeReproduction(sp, ps(sp), ps2(sp), field, t, ta) in

.6 (let ps4(sp)=growth(sp, ps, ps3(sp), field, t, ta) in

.7 (let ss3(sp)=soilSeedContent(sp, st, ss2(sp), field, t, ta) in

.8 (ss3, ps4)
■9))))

Comments:
SimulatePlant uses 4 helpfunctions to simulate growth and development: germination, ve-
getativeReproduction, growth and SoilSeedContent.
4. germination is used to calculate the germination on the basis of the start state.
5. vegetativeReproduction calculates the reproduction on basis of the start state and

modifies the plant situation output in 4.
6. growth calculates growth from the start state and modifies plant situation output from

5.
7. SoilSeedContent calculates the seed content at time ta, calculating the amount of seed

shedding and death in the period. Modifies the seedsituation output from 4.
8. The final output is the seed and plant situation for species sp.

Function germination
7.0 type germination: Species x State x Fieldlnformation x Time x Time —►

SeedContent x PopulationDevelopment
.1 germination (sp, st, field, t, ta)
.2 W
.3 let (ss, ps) = st in
.4 (let (ss2(sp), germ) = seedCountAdjustment (sp, ss(sp), field, t, ta) in
.5 (let ps2(sp) = plantCountAdjustment (sp, ps(sp), germ)) in
.6 (ss2(sp), ps2(sp)))).

86

Comments:
4. The help function seedCountAdjustment calculates the change in seedsituation for sp

after germination, the result is a new seed content for sp and a count of germinated
plants.

5. The help function plantCountAdjustment calculates the new count of plants of species
sp adjusting populationDevelopment.

Function VegetativeReproduction
8.0 type VegetativeReproduction-. Species x PopulationDevelopment x Population-

Development X Fieldlnformation x Time x Time —> PopulationDevelopment
.1 VegetativeReproduction (sp, pd, pd2, field, t, ta)
.2 d=
.3 ?

Comments:
The function shall calculate the vegetative reproduction from sta rt time, time of the year,
and possibly also field information and competition between species and plants. The output
will be a new populationDevelopment(sp)

Function growth
9.0 type growth: Species x PlantSituation x PopulationDevelopment x Fieldlnformation

X Time x Time —+ PopulationDevelopment
.1 growth (sp, ps, pd, field, t, ta)
.2 Hf
■3 let p i = ps(sp) in
.4 ?

Comments:
1. The function shall calculate the growth for the species sp in the period from t to ta. ps

is the start state at time t, and ps2 is the state which should be modified and output.
The function will probably be realized as a growth curve, for instance a logistic curve.
In the function should also be an effect of competition.

Appendix A5 87

Function soilSeedContent
10.0 type soilSeedContent: Species x State x SeedContent x

Fieldlnformation x Time x Time —► SeedContent
.1 soilSeedContent (sp, st, sc, pd, field, t, ta)
.2 d=
.3 let sO=(s-seedSituation(st))(sp),
.4 pO=(s-plantSituation(st))(sp) in
.5 (let ssd= SeedDeath (sp, sO, sc, field, t, ta) in
.6 seedSupply(sp, pO, ssd, t, ta)
•7)

Comments:
1. sc and pd are the seedcontent and population development for the species.
5. The help function seedDeath calculates the death of seeds in soil during the period

from t to ta and delivers a new seed content, ssd.
6. seedSupply calculates supply of seeds by seed shedding and calculates the final seed

content.

Function seedDeath
11.0 type seedDeath: Species x SeedContent x SeedContent x Fieldlnformation x

Time x Time —► SeedContent
.1 seedDeath (sp, sO, sc, field, t, ta)
.2 d=
.3 let d € dom(sO) in
.4 [d —► sc(d)-(normseeddeath(sp, t) * s0(d))]

Comments:
4. Calculates the count of seeds of species sp which dies in the period on the basis of the

start amount in soil. The product of a seed death rate from a table and the original
count is subtracted from the count in the end seed content.

Domain normseeddeath
SeedDeath uses a domain normseeddeath:

12.0 Normseeddeath = Species x Time —► REAL.
Comments:
Normseeddeath is the normal death rate for the species. This specification probably has to
be extended with depth. The seed death rate will the be a function of species, time and soil
depth.

Function seedSupply
13.0 type seedSupply. Species x PopulationDevelopment x SeedContent

X Time x Time —> SeedContent
.1 seedSupply (sp, pd, sc, field, t, ta)
.2 d=
.3 [‘5 cm’ —*■ sc(‘<5 cm’) -I- seedProduction(sp,pd,t,ta)]

Comments:
3. The count of seeds in the top 5 cm is summed with the seed production from the plants.

Function seedProduction
14.0 type seedProduction : Species x PopulationDevelopment x Time x Time —*■ Count
.1 seedProduction(sp, pd, t, ta)
.2 =f
.3 if ‘frøbærende’ G dom(pd) then
•4 SUM (V h 6 dom(populationDevelopment(’frøbærende’))
.5 heighttable(h) * seedprodtable(sp))

A ppendix A5 89

Comments:
3. If seedbearing plants are present in the start population development, pd,
4. then the count of all seedbearing plants are
5. multiplied with the normal seedproduction of a plant. The normal seed production are

in a table which are a new domain.
4. The seed counts from the multiplication are summed.
This function should maybe contain a modifier for seed production in relation to competition

Domain SeedProdTable
The function seedProduction uses a table of normal seed production for a plant, represented
with the following domain:

15.0 Seedprodtable = Species m Count.

Function seedCountAdjustment
16.0 type seedCountAdjustment: Species x SeedContent x Fieldlnformation x Time

x Time —► SeedContent x GerminatedPlants
.1 seedCountAdjustment(sp, sc, field, t, ta)
.2 d=
.3 let sd=dom(sc) in
.4 (if sd={} then (0,0)
.5 else
.6 let a€ sd in,
.7 (let (scl, g l) = treat(a, sc, field, t, ta),
.8 (ser, gr) = seedCountAdjustment(sd \a , sc, field, t, ta)
.9 in (sei U scr, g l+ g r))

Comments:
4. if there are no keys in seedcontent the the result is an empty list and 0 for germinated

plants.
6. if the set is not empty, one key is chosen,
7. the count of germinated seeds and the adjustment are calculated by the help function

treat.
8. SeedCountAdjustment are called with the rest of the set.

90

Function treat
17.0 treat: Species x SeedContent x Fieldlnformation x Time x Time —►

SeedContent x GerminatedPlants
.1 treat(sc, field, t, ta)
.2 = f
.3 let [d —> c])in
A (let g= germin(sp,d,t) * sc(d) in
.5 ([d — sc(d)-g], g))

Comments:
4. Treat uses the table germin to find the germination

The product of the table value and the start soil content is the germinated amount.
5. subtraction of germinated plants from the seed content gives the new seed content.

Domain Germin
18.0 Germin = (species x depth x time) —*• REAL.

A ppendix A5 91

Comments:
Germin is a table of the amount of germination on basis of species, soil depth and time of
the year.

Domain GerminatedPlants
19.0 GerminatedPlants = INTG.

Function plantCountAdjustment
20.0 type plantCountAdjustment : Species x PopulationDevelopment

X GerminatedPlants —► PopulationDevelopment
.1 plantCountAdjustment(sp, pd, germ)
.2 dé{
.3 cases ‘kim ’
.4 (^ dom(pd) —+
.5 pd’= [‘kim’ —► [spgermheight(sp) —► germ]] in
.6 pd-f-pd’
.7 6 dom(pd)—*■
.8 let heightt= pd(‘kim ’) in
.9 ((if spgermheight(sp) £ dom(heightt) then
.10 heightt’(spgermheight(sp)) = heightt(spgermheight(sp)) + germ
.11 else heightt’(spgermheight(sp))= germ) in
.12 P d’= [‘kim’ —► heightt + heightt’] in
.13 p d + p d ’))

Comments:
3. There are two cases
4. If ‘kim’ is not a key in the population development table,
5. the key is created.
6. The new entrance is summed with the prior development table.
7. If ‘kim’ is already a key:
9. The normal height for new germinated plants are looked up in the table spgermheight.

If the height is a key in the heighttable for ‘kim ’
10. then the count in the heighttable are summed with the count of germinated plants.
11. else a new entrance are created.
13. The new entrance is summed with the prior table.

92

Domain Spgermheight
21.0 Spgermheight = Species —► Height.

Comments:
Spgermheight is a table which pictures species in a height for newly germinated plants.

Function SimulateAction
22.0 t y pe S i m u l a t e A c t i o n : State x Action x Specieslist x Fieldlnformation x Time —► State
.1 simulateAction(St, ac, si, field, ta)

Comments:
A The help function effectOnSoilSeeds calculates the effect on the soil seed distribution.
.5 The help function effectOnPlants calculates the effect on the plants.

Function effectOnSoilSeeds
23.0 type effectOnSoilSeeds: SeedSituation x Fieldlnformation x Specieslist x

Action x Time —► SeedSituation
.1 effectOnSoilSeeds (ss, field, si, ac, ta)

.2

.3
A
.5
.6

d e f

let (ss , ps) = st in
(let ss’ = effectOnSoilSeeds (ss, field, si, ac, ta),
ps’= effectOnPlants (ps, field, si, ac, ta) in
(ss’, ps’))

.2

.3

.4

.5

.6

.7

d e f

V sp (E si :
(let sc=ss(sp) in
((down, up) = movement(sc,ac,sp) in
V d in dom(sc):
case d:

8 ‘<5 cm’ ->
.9
.10
.11
.12
.13

‘>5 cm’ —►
sc’=[d —► sc(d) - down + up] in
ss + [sp —+ sc+sc’]
sc’=[d —► sc(d) + down - up] in
ss + [sp —* sc+sc’]))

A ppendix A 5 93

Comments:
3. For all the plants in the species list:
4. The helpfunction movement calculates the movement of seeds from the toplayer down,

and from the bottom layer up.
9. From the count in the toplayer, the movement down is subtracted, up is summed .
12. From the bottomlayer count, the movement down is summed, up is subtracted.
10,13. A new seed situation is created by summing the two seedcontents, overwriting the old

values.

Function movement
24.0 type movement: SeedContent x Action x Species —► Count x Count
.1 movement(sc, ac, sp)
.2 d=
.3 V d in dom(sc)
.4 (if d = ‘<5 c ,’ then down=sc(d) * actionMovement(ac, d)
.5 else up=sc(d) * actionMovement(ac, d) in
.6 (down,up)

Comments:
3. For the depths in the seed content table, ‘<5 cm’ and ‘>5 cm’
4. The downward movement is calculated as the product of the seed content in the toplayer

and a table value.
5. The upward movement is calculated as the seed content in the bottom layer and a table

value.

Function effectOnPlants
25.0 type effectOnPlants: PlantSituation x Fieldlnformation x Specieslist

X Action X Time —► PlantSituation
.1 effectOnPlants (ps, field, si, ac, ta)
.2 = f
.3 Vp 6 si:
.4 let ds= actionDevelop (p, ps(p), field, ac, ta) in
.5 ps + [p —► ds]

Comments:
3. For all the species in the specieslist
4. The action effect are calculated by the help function actiondevelop
5. and the plant situations are summed.

Function actionDevelop
26.0 actionDevelop: Species x PopulationDevelopment x Fieldinformation x Action

X Time —* PopulationDevelopment
.1 actionDevelop (sp, pd, field, ac, t)
.2 = f
.3 V d G dom(pd):
.4 let h t = actionheight(sp, pd(d), field, ac,t) in
.5 pd + [d —► ht]

Comments:
3. For all the development stages in the population development
4. the action effect are calculated by actionheight,
5. and the populationDevelopments summed.

Function actionHeight
26.0 actionHeight. Species x Heighttable x Fieldinformation x Action

X Time —» Heighttable
.1 actionHeight(sp, ht, field, ac, t)
.2 = f
.3 V h € dom(ht):
.4 h t’= [h —► ht(h) * actioneffect(h, ac, sp)] in
.5 ht + h t’

Comments:
3. For all the heights in the heighttable
4. the effect of the action are calculated by multiplying a percent effect from the table

actioneffect with the count.
5. The new heighttable entrance is summed with the old writing over the old values.

A ppendix A5 95

Domain ActionEffect

27.0 ActionEffect = Height x Action x Species —► REAL.
Comments:
ActionefFect is a table which pictures plant heigt, action, and species on a procentual effect.

Appendix Bl
Glossary
AI Abbreviation of artificial intelligence - a

research field in computer science. The
researchers examine possibilities to con­
struct systems which show properties
normally connected to intelligence. For
instance ability to solve problems, com­
municating in natural language, ability to
leam and interpreting visual information.

Backward chaining The opposite of forward
chaining. In backward chaining the infer­
ence engine finds a rule whose conclusion
is the same as the hypothesis. Then it
checks if the premise of the rule is true.
Either by checking the knowledge base,
asking the user or by finding other rules
which conclusions are the same as the
premise proposition. The search continues
until all premises for the hypothesis are
true or there is no more rules.

Compound variable domain Domain which
are put together from two domains. This
could be for instance a number from the
Integers and a string ‘cm’.

Conceptualization Finding the concepts,
relations and information-flow character-
istivs needed to solve problems in the
domain.

Concept A descriptive schema for a class of
things.

Deep knowledge All the knowledge about
components or concepts in a domain and
the relations that links them together,
including cause-effect relations.

Domain The portion of a humans problem
situation that are chosen to be studied and
included in the computer system.

Domain for variables
In programming languages data types
specifies a collection of data objects with
a certain structure. In META IV, which is
an abstract notation used on design level,
the word domain is used instead of data

type.
Dry m atter minimum The time during ger­

mination where the plant has used dry
matter from the reserves to germinate and
now are big enough to start producing dry
matter reserves.

EGERIA A software tool designed for the
construction o f expert systems

Expert system shell Tool for developing
expert systems. An expert system shell
contains an inference engine and a user
interface, The knowledge engineer then
only has to program the knowledge base.

Formalization Mapping concepts and relations
found during conceptualization into a
formal representation suggested by some
expert system building tool or language.

Forward chaining The opposite of backward
chaining. The inference engine finds rules
which premises are true according to data,
and can then infer the conclusions. Then
other rules may have premises which are
true. In that way the rules are chained in
a forward direction. The search stops
when there is no more rules or a hypoth­
esis has been confirmed.

Harvest index The grain/straw part of the
yield.

Inference The process of deriving a conclusion
from a set of rules by applying some
deduction rules.

Inference engine The part of an expert system
which draws inferences and controls the
reasoning process.

Knowledge acquisition This is the extraction
and transformation of knowledge from
some knowledge source, especially
experts, to a program.

Knowledge base The part of an expert system
where the knowledge of the domain is
expressed.

Knowledge elicitation Knowledge collection

96

Appendix Bl

from the expert. Knowledge elicitation is
a part of the Knowledge acquisition.

Knowledge representation Writing the knowl­
edge in a way which can be understood by
a machine.

Object In object oriented programming con­
cepts in the domain is represented by
objects. Objects is described by attributes
and operations, and can inherit attributes
and operations from each other.

Surface knowledge A selected part of the
deep knowledge needed for problem solv­
ing in a domain - also including heuristics
about the domain and the problem solving.

Windowed interface An interface to a com­
puter program where the information and
the questions all go through windows.

Afdelinger under Statens Planteavlsforsøg

Frederiksberg Bogtrykkeri is 920631

